
Measuring Enrichment: The Assembly and Validation of an
Instrument to Assess Student Self-Beliefs in CS1

Michael James Scott
Information Systems, Computing & Mathematics

Brunel University
Uxbridge, Middlesex, UB8 3PH

United Kingdom
michael.scott@brunel.ac.uk

Gheorghita Ghinea
Information Systems, Computing & Mathematics

Brunel University
Uxbridge, Middlesex, UB8 3PH

United Kingdom
george.ghinea@brunel.ac.uk

ABSTRACT
Educational research has shown that self-beliefs can have
profound influences on learning behaviour and achievement.
It follows, then, that beliefs about the nature of
programming aptitude (e.g., students’ mindset) and the way
in which individuals perceive themselves as programmers
(e.g., students’ self-concept) could also have a salient impact
on programming practice behaviour and the development
of programming expertise. However, in order to test this
hypothesis, a valid and reliable measurement instrument is
needed. This paper draws upon the Control-Value Theory
of Achievement Emotion to assemble such a measurement
instrument. An evaluation of the proposed measurement
instrument with three cohorts of undergraduate computing
students (N = 239) then demonstrates that reliability
and construct validity are adequate, while the concurrent
validity of the conceptual framework is satisfactory. This
suggests that the measurement instrument is suitable
for further research into students’ self-beliefs within
the introductory programming context. However, it is
important to note that this work represents only a first step
and further validation is required to establish whether the
measurement instrument is valid across different contexts
and populations.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Psychology; K.3.2
[Computers and Education]: Computer and Information
Science Education—Computer Science Education.

General Terms
Human Factors, Measurement.

Keywords
Measurement; Self-Beliefs; Self-Concept; Self-Efficacy;
Mindset; Anxiety; Interest; Practice; Programming; CS1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’14, August 11-13, 2014, Glasgow, Scotland, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632350.

1. INTRODUCTION
Reliable and valid measurement is critically important

in educational research. Variables of interest should be
clearly defined and measured with minimal error in order
to make meaningful conclusions from an analysis [8, 44].
However, there is not a strong history of instrument
development and validation in computer science education
research. Two systematic reviews of the literature found
that the quantitative research in the field would benefit
from improvements in methodology and reporting [37, 46].
Of particular interest, only 1.5% of articles published
between 2000 and 2005 reported adequate psychometric
information to support the validity, the reliability, and the
generalisability of their claims [37].

A number of measurement instruments have since been
developed and evaluated. For example, the Foundations
of CS1 Test (FCS1) assesses students’ performance in the
cognitive-domain of introductory computing [45]. However,
few instruments address the affective-domain of learning
computing (e.g., attitude development [9]). In particular,
there is a need to explore the emotive aspects of learning
computer programming as, for some students, programming
invokes strong negative feelings [19, 24, 38] and shapes
their self-beliefs in counter-intuitive ways [22]. This is
important to consider because self-beliefs play an important
role in academic development [5, 26]. As an example,
beliefs about the nature of programming aptitude, extending
Dweck’s mindset theory (see [7, 10, 11, 32, 42]), can lead
to significant differences in the time that students report
practising programming [41]. Nevertheless, to pursue this
line of research, a valid measurement instrument is needed.

As such, this article will propose one such measurement
instrument and will then address the research question: is
the proposed measurement instrument reliable and valid?
The following section will highlight a number of challenges
encountered in introductory programming and will then
situate these challenges within the Control-Value Theory of
Achievement Emotions to illustrate the potential role which
students’ self-beliefs may play. Drawing from the theory,
a parsimonious set of key variables is then identified to
include in the measurement instrument. The next section
then describes how the proposed measurement instrument
was assembled. This leads into an evaluation with three
cohorts of undergraduate computer students. The paper
then closes with a brief discussion of the potential uses of the
measurement instrument, its limitations, and a conclusion
on its adequacy for future research.

2. BACKGROUND

2.1 Challenges in Programming Education
Programming is a craft which many would seem to find

challenging to learn [21]. Notwithstanding practices that
have been shown to improve retention and success [36],
failure rates can be high [4] and there is a history of
poor outcomes in the higher education context [17, 45].
The reasons for these poor outcomes are complex and
multifaceted (see [3]). However, for this reason, introductory
is considered a challenge for computer science education
research [17, 30].

A key issue can sometimes be the amount and the quality
of practice that novice programmers engage in [40]. This
is because the discipline can require a substantial level of
deliberate practice to master [13, 51]. That is, practice
which is ongoing, focused, reflective, and situated at the
right level of challenge for any individual student [13]. This
type of practice, however, is inherently uncomfortable and
demands that learners remain motivated.

Despite the best efforts of instructors (e.g., through
encouraging and motivating students [20]), learners
regularly report negative experiences when they engage with
programming tasks [22, 38]. Some authors describe this
phenomenon as programming trauma [19] and, to reinforce
such striking language, there is some evidence which
indicates that the type of task anxiety these experiences
invoke are related to the activation of brain regions
associated with visceral threat detection and pain [27].
Another concern is evidence suggesting that such affective
factors worsen over a course of instruction [31, 41].

With this being the case, the emotions that learners
feel may prompt them to reflect on themselves and their
ability in several different ways [22]. Potentially, learners
may start to believe that they no longer have the time or
the motivation to overcome these challenges as they cannot
envision success in the future [23]. In other words, learners
may change their self-beliefs based on their experiences,
through a process of self-appraisal, potentially diminishing
the way that they identify with programming as a discipline
and disengaging with deliberate forms of practice [35, 40].

2.2 The Control-Value Theory of
Achievement Emotions

A framework that considers the role of self-beliefs
and emotions in learning is the Control-Value Theory of
Achievement Emotion [33, 34]. In this framework, students’
self-appraisal of ongoing achievement activities, and of
their past and future outcomes, are of key importance.
This is because the emotions that they experience during
a particular task will depend upon whether they feel in
control of the outcome and that the outcome is subjectively
important to them.

These emotions then influence academic engagement and
performance through the model shown in Figure 1. The
model proposes that instruction and support have an
influence on the way in which individuals form the control
and value appraisals. These appraisals then shape the
specific achievement emotions that students may experience
based on whether they feel they can control activities and
outcomes that are subjectively important to them. These
emotions then have a direct impact on self-regulated learning
and performance. Specifically, emotions seem to influence

cognitive resources, use of strategies, and dependence on
external regulation of learning [33]. The overall model is also
reciprocal in nature, such that outcomes can shape emotions
while both emotion and performance shape the way students
form their self-appraisals. In some cases, instruction and
support may also respond to student needs. In particular,
offering a range of interventions which could influence any
part of the model. As this process continues over time, it
could have substantial impact on learning behaviour and
subsequently performance; as evidenced through the known
co-variance between self-efficacy beliefs and success [47, 50].

Instruc!on

 &

Support

 Control-Value

 Appraisals

Ac!vity & Outcome

Emo!ons

Self-Regulated

Learning

&

Performance

Design of Learning and Social

Environments

Appraisal-Orientated

Interven!on

Emo!on-Orientated

Interven!on

Competence-Orientated

Interven!on

Self-Concept

Interest Task Anxiety Avoidance Behaviour

Mindset

Feedback

Learning Ac!vi!es

&

Figure 1: Overview of the Control-Value Theory
of Achievement Emotion with an Embedded
Conceptual Framework (Adapted From [33, 34])

As each component of the framework represent a broad
range of different constructs, a parsimonious conceptual
framework has been embedded within the model. This
example has been derived from factors hypothesised to
influence student programming practice [40] and illustrates
how learning activities and feedback influence students’ self-
beliefs. Namely: self-concept, which is is understood to be
a composite of “self-perceptions that are formed through
experience with and interpretations of one’s environment”
[29]; interest, which is the extent to which an individual
enjoys engaging with a set of tasks; and mindset, based on
Dweck’s [10] notion of mindsets. That is, students have
a growth mindset, where they believe their capacities can
be developed through practice, or students have a fixed
mindset, where they believe their capacities are natural,
inherent qualities. These, in turn, influence task anxiety
which, consequently, may encourage avoidance behaviour.

2.3 Proposed Conceptual Framework and
Instrument Assembly

To validate the framework and test such a hypothesis,
it is necessary to develop an appropriate measurement
instrument. Therefore, in line with the proposed conceptual
framework shown in Figure 2, items for the key variables
were assembled.

 Programming Interest

 Programming Self-Concept

 Programming Ap!tude

 Mindset

 Programming Anxiety
 Programming Prac!ce

 Frequency

Figure 2: A Conceptual Framework for Enhancing
Students’ Programming Practice

The measurement model for the proposed measurement
instrument consisted of four constructs: Programmer
Self-Concept (PSC); Interest in Software Development
(INT); Programming Anxiety (ANX); and Mindset Towards
Programming Aptitude (APT). Additionally, in order
to ensure appropriate discriminatory power between
constructs, such as differences between self-concept and self-
efficacy [6], items relating to software debugging task self-
efficacy are also included (DSE). As existing instruments
target similar constructs of interest, items were drawn from
the literature and adapted to the introductory programming
context. A self-report of programming practice behaviour,
for the purpose of establishing the concurrent validity of the
proposed framework, is also included (see [41]).

The construct debugging task self-efficacy captures
learners’ cognitive self-assessments of whether or not they
are confident in their ability to write and debug simple
programs. This is based on the theoretical construct
proposed by Bandura [1], as it relates to how self-
assessments influence behaviour change. The items for
this construct were created using guidelines regarding the
domain-specificity of self-efficacy and its association with
particular criterial tasks.

The construct of programmer self-concept has some
conceptual overlap with debugging self-efficacy, however
there are a range of theoretical and empirical differences
[6, 14]. It represents a composite of self-perceptions
that one can be a good programmer, which is “formed
through experience with and interpretations of one’s
environment”. This construct drives the affective elements
of being a programmer as opposed to a cognitive assessment
of success at programming because “self-concept better
predicts affective reactions such as anxiety, satisfaction, and
self-esteem, whereas self-efficacy better predicts cognitive
processes and actual performance” [6]. The items for this
construct were adapted from scales used by Ferla et al. [14]
and Eccles & Wigfield [12]. These focus on the ability-belief
component of self-concept.

The construct for interest in software development
measures the extent to which an individual enjoys engaging
with programming-related activities. This construct is
believed to have a reciprocal relationship with self-concept,
resulting in the pursuit of more achievement experiences in
a domain [16]. The items for this construct were adapted
from the scale used by Wigfield et al. [48], focusing on the
enjoyment aspect of interest.

The programming anxiety instrument construct measures
the self-reflected state of experiencing negative emotions,
such as nervousness or helplessness, while writing and
debugging programs. The items were drawn and adapted
from the worry-component of the instrument used by
Wigfield and Meece [49].

The mindset towards programming aptitude instrument
construct represents the strength of a learners’ belief in the
notion of a fixed programming aptitude (e.g., aptitude is
inherent and cannot change). The items were drawn from
Dweck [10].

These items were then put together as a 5-point Likert
instrument, with each item rated from strongly disagree to
strongly agree. Each item was reviewed by 2 colleagues and
a small convenience sample of undergraduate students, and
revised to improve content validity and readability. This
resulted in the instrument shown in Table 1.

3. METHOD
In order to evaluate the proposed measurement

instrument, the psychometric properties are examined.
Namely, based on the recommendations of Straub et al.
[43] and other authors (e.g. [8, 44]), reliability and validity
need to be established in order to deem a measurement
instrument adequate. This involved a trial of the instrument
with three cohorts of students at the conclusion of their first
programming course and an analysis of their responses using
a confirmatory factor analysis technique (see [18]).

3.1 Data Collection
The sampling frame for each cohort was set to all students

who had submitted at least one assignment or code review
to ensure participants had indeed attended the course.
Minimum sample size requirements were calculated using
Cochran’s formula for continuous data with finite population
correction and adjusted for anticipated non-response [2].

A random sampling procedure was used to select
participants. Data was collected in three rounds: a
paper-based survey was distributed to all students in the
lab environment (unselected cases are not considered in
analysis); a digital version was then advertised on the virtual
learning environment and email alerts were distributed to
those whom had not responded to the paper-version; after
ten days, an additional series of follow-up emails were
distributed to the non-respondents. All participants were
offered an opt-out for further communication at each stage.

From 126, 115 and 98 invitations for each respective
cohort, 91, 84, and 64 responded. This represents an overall
response rate of 70%, noting that 34 cases in 2011-12, 30
cases in 2012-13, and 21 cases in 2013-14 were classified as
late respondents. This is because their response was elicited
after considerable follow-up during a third round of data
collection.

3.2 Participants
Participants were all first undergraduate students

following the sequential pathway for either ‘Computer
Science’ or ‘Business Computing’. The descriptive statistics
show that less than 20% of the respondents were female,
while the average age was 20 years, with approximately 15%
respondents being mature students (over the age of 23 at
entry).

Admission to the pathway required at least 300
UCAS Points (University & College Admission System
Points), with a strong preference for STEM subjects
(science, technology, engineering, and mathematics). Prior
programming experience was not required. However,
students without a relevant STEM qualification, or the
required points, could opt to pursue a relevant foundation
course.

During the introductory programming course, students
would learn object-orientated design and the fundamental
constructs of the Java language. This was conducted
through a sequence of laboratory-based assignments and a
collaborative project. The assignment for the 2011-12 cohort
was a website and a lab-based programming examination.
The assignments for the 2012-13 and 2013-14 cohort
were robot scripting tasks, where students would program
robots to complete activities such as maze navigation or
communication in Morse Code. These assignments were
examined by code review and oral viva.

4. DATA ANALYSIS
According to Straub et al. [43], there are three main

forms of validity and reliability which are important in
instrument development: content validity, construct validity
and internal reliability. Content validity is the level
at which items used to measure a construct reflect the
meaning of the construct (and breadth of possible items
which could represent the construct) to which the items
will be generalised. Construct validity is the form of
validity that deals with the degree to which items are
an effective measure of a theoretical construct. This is
often sub-divided into convergent validity and discriminant
validity as evidence for both imply construct validity [18].
Convergent validity refers to the level at which multiple
items which theoretically should be related are actually
related. Conversely, discriminant validity assess the extent
to which items which should be unrelated are actually
unrelated. Reliability refers to the extend with which
parallel items are consistent in what they are intended
to measure (e.g. responses to a set of related items
are internally consistent). Concurrent validity is also a
consideration in cases where constructs should be related.
That is, a construct is related to, or able to predict, another
in the same instrument.

The data was analysed in PASW v20 and AMOS 21. All
data was analysed. Items under consideration were modified
to reflect feedback received from the 2011-12 cohort (see
[39]), as such items were analysed on a pair-wise basis. This
section follows the factor analysis procedure outlined by Hair
et al. [18].

4.1 Descriptive Statistics
Descriptive statistics for the three samples are shown in

Table 1 on the following page. This shows that learners
tended to report high DSE, PSC, and INT. Many reported
low ANX and, as indicated by low APT, many endorsed a
growth view of programming aptitude.

Some analyses require the distribution of the data to
follow a normal distribution. This was verified through
an examination of skew and kurtosis, with skew indices
greater than 3.0 and kurtosis indices greater than 10.0 often
indicative of severe non-normality [25]. Table 1 shows these
indices are within these guidelines.

4.2 Measurement Model
To verify the structure of the items for the proposed

measurement model (i.e., checking that it was appropriate
to group variables together into meaningful constructs),
the proposed five-construct solution was evaluated using
maximum-likelihood confirmatory factor analysis. As
advised in [18], several fit indices were used to determine
fit. One APT item was eliminated at this stage due to a
low regression weight. Modifications were also made based
on the modification indices to improve overall fit. These fit
indices for the final set of items, shown in Table 2, indicate
that the hypothesised model was ‘not a bad fit’ to the data
(i.e., accepting the null hypothesis of having no significant
difference between the prediction and the data).

This suggests that the expected model was adequately
reflected by the structure of the data. However, it should
be noted that alternative models with superior fit could still
exist. An exhaustive review of alternative candidate models
is beyond the scope of this article.

Table 2: Fit Indices and Criteria for the
Measurement Model

Fit Index
Measurement

Model

Adequate Fit

Criteria [18]

χ2(df = 153) 267.312 N/A

χ2/df 1.747 < 3.00

p 0.000 > 0.05

NNFI 0.950 > 0.90

CFI 0.960 > 0.90

SRMR 0.044 < 0.08

RMSEA 0.056 < 0.08
Note: df: degrees of freedom, NNFI: non-normed fit index, CFI: comparative fit index,
SRMR: standardised root mean square residual, RMSEA: root mean square error of
approximation.

Table 4: Regression Results for Relations in the
Proposed Structural Model

Relationship Estimate
Standard

Error

Critical

Ratio
p

APT → ANX 0.310 0.084 3.685 < 0.001

INT → ANX -0.020 0.149 −0.135 0.893

PSC → ANX -0.534 0.085 −6.301 < 0.001

ANX → PRACT -2.335 0.389 −6.004 < 0.001
Note: APT: programming aptitude mindset, PSC: programming self-concept, ANX:
programming anxiety, PRACT: frequency of programming practice.

4.2.1 Reliability
Reliability is assessed through examining the Composite

Reliability (CR) of each construct. Values close to 1.0
indicate reliablilty, with 0.7 considered minimal [18]. Table
3 shows that the values are consistently above 0.7. Thus,
the measurement instrument was reliable with this sample.

4.2.2 Construct Validity
In order to establish construct validity, each construct

should demonstrate convergent and discriminant validity.
Adequate convergent validity is demonstrated by an Average
Variance Extracted (AVE) greater than 0.5 [18]. Table
3 shows all values were above this threshold. Adequate
discriminant validity is demonstrated by the

√
AVE being

greater than any correlation with another construct [15].
Table 3 shows that the

√
AVE of each construct was greater

than its most significant correlation with another construct.
Subsequently, these results imply construct validity.

4.2.3 Concurrent Validity
Adequate concurrent validity is established through a

cursory examination of the correlation matrix and an
examination of hypothesised relationships in a structural
model. Table 3 does not show any anomalies within
the correlation matrix. As such, the proposed structural
model was assessed along with a self-report measure of
programming practice. The results, shown in Table 4, reveal
that most of the expected regression relationships were
statistically significant. However, the regression between
INT and ANX was not statistically significant. This suggests
that either there is no relationship or the size of effect
is small. Nevertheless, with the exception of INT, the
conceptual model appears to be valid.

Table 1: Mean, Standard Deviation, Skewness and Kurtosis of the Instrument Items

Item Item Description M SD Sk K

Debugging Self-Efficacy

DSE1 I am confident that I can understand Java exceptions (e.g., NullPointerException) 3.65 0.96 -0.27 -0.61

DSE2 I am confident I can solve simple problems with my programs 3.48 1.02 -0.18 -0.55

DSE3 I am confident I can implement a method from a description of a problem or algorithm 3.87 0.98 -0.68 -0.26

DSE4 I am confident I can debug a program that calculates prime numbers 3.68 0.92 -0.35 -0.37

Programming Self-Concept

PSC1 I am just not good at programming 2.44 1.18 0.44 -0.67

PSC2 I learn programming quickly 3.42 1.11 -0.28 -0.58

PSC3 I have always believed that programming is one of my best subjects 3.41 1.17 -0.28 -0.82

PSC4 In my programming labs, I can solve even the most challenging problems 3.34 1.10 0.07 -1.01

Programming Interest

INT1 I enjoy reading about programming 3.66 1.10 -0.44 -0.50

INT2 I do programming because I enjoy it 3.93 0.95 -0.75 0.13

INT3 I am interested in the things I learn in programming classes 3.72 0.98 -0.52 -0.39

INT4 I think programming is interesting 3.87 1.03 -0.72 0.67

Programming Anxiety

ANX1 I often worry that it will be difficult for me to complete debugging exercises 2.77 1.06 -0.27 -0.85

ANX2 I often get tense when I have to debug a program 2.83 1.18 -0.08 -0.95

ANX3 I get nervous when trying to solve programming bugs 2.82 1.16 0.06 -0.96

ANX4 I feel helpless when trying to solve programming bugs 2.76 1.21 0.11 -0.83

Programming Aptitude Mindset

APT1 I have a fixed level of programming aptitude, and not much can be done to change it 2.08 0.97 0.82 0.35

APT2 I can learn new things about software development, but I cannot change my basic aptitude for programming 2.22 0.95 0.34 -0.59

APT3 To be honest, I do not think I can really change my aptitude for programming 1.90 0.92 0.87 0.23

Note: Pooled Sample (N = 175); M: mean, SD: standard deviation, Sk: skew, K: kurtosis.

Table 3: Construct Validity of the Latent Constructs in the Measurement Model

Loadings Reliability Variance Explained Correlations

Items FL CR AVE MSV ASV DSE PSC INT ANX APT

Debugging Self-Efficacy 0.868 0.624 0.530 0.418 (0.790)

DSE1 0.776

DSE2 0.808

DSE3 0.696

DSE4 0.870

Programming Self-Concept 0.703 0.655 0.494 0.413 0.703 (0.809)

PSC1 -0.710

PSC2 0.800

PSC3 0.882

PSC4 0.835

Programming Interest 0.842 0.579 0.530 0.363 0.728 0.686 (0.761)

INT1 0.781

INT2 0.847

INT3 0.846

INT4 0.522

Programming Anxiety 0.888 0.664 0.475 0.364 -0.681 -0.689 -0.507 (0.815)

ANX1 0.817

ANX2 0.762

ANX3 0.834

ANX4 0.844

Programming Aptitude Mindset 0.865 0.682 0.262 0.214 -0.431 -0.462 -0.439 -0.512 (0.826)

APT1 0.782

APT2 0.858

APT3 0.836

Note: Values on the diagonal represent
√

AVE; FL: factor loading, CR: composite reliability, AVE: average variance explained, MSV: maximum shared variance, ASV: average shared variance,
DSE: debugging self-efficacy, PSC: programming self-concept, INT: programming interest, ANX: programming anxiety, APT: programming aptitude mindset.

5. DISCUSSION
Adequate measurement in computing education research

is important. This is because researchers need to know
whether the measures being selected and used by other
researchers are valid. Straub et al. [43] highlight several key
concerns that researchers may have: Does the instrument
truly represent the essence or content of the target
construct? Is the instrument unidimensional and therefore
only representing the target construct? Has the target
construct been confused with another similar construct?
Are the estimates of the true values of latent constructs
appropriate? Rigorous approaches to measurement address
such questions.

Unfortunately, there has not been a strong history
of reporting psychometric information in the field [37]
and few measurement instruments are readily available
to researchers in the computing education community.
Particularly, measurement instruments that capture
constructs concerned with the affective-domain of learning
computer programming. This may be because developing
adequate measurement instruments can be fraught with
difficulties [43]. However, there is a strong case for pursuing
such work [43, 44] and there is a range of literature which
can be drawn from for support (e.g. [8, 18, 43]).

This paper has assembled one such measurement
instrument and demonstrated that it has adequate
psychometric properties in terms of reliability, construct
validity, and concurrent validity. This instrument focuses on
student self-beliefs in the introductory programming context
and measures five different constructs: programming
aptitude mindset, programming self-concept, debugging self-
efficacy, programming anxiety, and programming interest.

It is interesting to note that interest in software
development did not predict programming anxiety. In
hindsight, other value appraisals such as ‘importance
of programming for future prospects’ may have been
more appropriate for anxiety. Nevertheless, programming
self-concept and mindset towards programming aptitude
were shown to be related to programming anxiety and,
subsequently, programming practice behaviour. These
relationships have not been firmly established as causal
relationships nor are the directions of the relationship clear.
This suggests that the measurement instrument will be
useful for future work investigating hypotheses raised by the
theory in, for example, longitudinal survey studies.

The measurement instrument may also be useful in
other similar areas of work. There is a vast range
of techniques which educators could attempt to apply
in order to enrich their students’ beliefs, practice, and
performance (see [28]). Using a validated instrument, such
as the one proposed here, will improve the rigor of such
explorations. To illustrate, the authors previously embedded
a fantasy role-play within an e-learning tool to evaluate
its impact on students’ programming self-concept through
a pre-post experiment [39]. The ongoing development
of this measurement instrument will support future
such experiments, increasing confidence that such design
experiments present useful and meaningful conclusions.
Other uses of the measurement instrument may include
educators using the measurement instrument to identify
potential problems in their introductory programming
classes or researchers evaluating student outcomes across
different course designs and cohorts.

6. LIMITATIONS
It should be noted that this work only represents a first

step and future development is needed to overcome a number
of limitations. Most importantly, the instrument has
only been administered to students at a single institution.
Therefore, it may not generalise to populations from other
higher education institutions; particularly, those with a
different culture. Therefore, there is a need to further
validate the tool beyond the institution. Of particular
note, the cross-cultural validity of the measurement
instrument also needs to be considered in addition to the
appropriateness of adapting the framework for different
educational contexts. In its present form, it is not clear
whether the instrument would be suited for a range of
programming topics or age groups.

A small number of items have been included in this
scale to facilitate the collection of data from a large group
with a short questionnaire. As such, it should not be
used to make fine-grain judgements about any individual
student. However, estimation of the true values of the latent
constructs for individual students would likely improve with
additional items.

7. CONCLUSION
Valid measurement is important, however only a small

number of validated measurement instruments are available
to computing education researchers. This limits research
being conducted into educational theory, teaching practice
and the the use of instructional technologies which aim to
enrich beliefs and learning behaviour. The study presented
in this paper contributes to this gap in the literature through
the assembly and validation of a measurement instrument
that could be used for such research. Specifically, for the
investigation of student self-beliefs within the introductory
programming context.

Three administrations of the instrument at the authors’
institution demonstrated that the proposed measurement
model had a good fit to the data. Furthermore, there
was adequate support for reliability, construct validity,
and concurrent validity. However, there are a number of
limitations. Critically, the results may not generalise to
different age-groups, cultures or educational contexts.

Future work will involve further validation of the
conceptual framework in addition to an examination of
appropriate descriptive statistics across a range of students
and contexts. This will support further research into
teaching practice and instructional technology used in
introductory programming.

8. REFERENCES
[1] A. Bandura. Self-efficacy: Toward a unifying theory of

behavioral change. Psychological Review, 84(2):191 –
215, 1977.

[2] J. E. Bartlett, J. W. Kotrlik, and C. C. Higgins.
Organizational Research: Determining Appropriate
Sample Size in Survey Research. Information
Technology, Learning, and Performance Journal.
19(1):43 – 50, 2001.

[3] T. Beaubouef and J. Mason. Why the High Attrition
Rate for Computer Science Students: Some Thoughts
and Observations. SIGCSE Bulletin, 37(2):103 – 106,
2005.

[4] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. SIGCSE Bulletin, 39(2):32
– 36, 2007.

[5] L. Blackwell, K. Trzesniewski, and C. S. Dweck.
Implicit Theories of Intelligence Predict Achievement
Across an Adolescent Transition: A Longitudinal
Study and an Intervention. Child Development, 78:246
– 263, 2007.

[6] M. Bong and E. Skaalvik. Academic Self-Concept and
Self-Efficacy: How Different Are They Really?
Educational Psychology Review, 15(1):1 – 40, 2003.

[7] Q. Cutts, E. Cutts, S. Draper, P. O’Donnell, and
P. Saffrey. Manipulating mindset to positively
influence introductory programming performance. In
Proceedings of the 41st ACM technical symposium on
Computer science education, pages 431 – 435, 2010.

[8] R. F. DeVellis. Scale Development: Theory and
Applications. Sage: London, 3rd edition, 2012.

[9] B. Dorn and A. E. Tew. Becoming experts: Measuring
attitude development in introductory computer
science. In Proceeding of the 44th ACM technical
symposium on Computer science education (SIGCSE
’13), pages 183 – 188, 2013.

[10] C. S. Dweck. Self-Theories: Their Role in Motivation,
Personality, and Development. Psychology Press,
Philadelphia, PA, 1999.

[11] C. S. Dweck and A. Master. Self-Theories Motivate
Self-Regulated Learning. pages 31 – 51. Lawrence
Erlabaum, New York, NY, 2008.

[12] J. S. Eccles, Wig̈ıň ↪Aeld, and A. In the mind of the
actor: The structure of adolescents’ achievement task
values and expectancy-related beliefs. Personality and
Social Psychology Bulletin, 3:215 – 225, 1995.

[13] K. Ericsson, R. Krampe, and C. Tesch-Romer. The
Role of Deliberate Practice in the Acquisition of
Expert Performance. Psychological Review, 100(3):363
– 406, 1993.

[14] J. Ferla, M. Valcke, and Y. Cai. Academic
Self-Efficacy and Academic Self-Concept:
Reconsidering Structural Relationships. Learning and
Individual Differences, 19(4):499 – 505, 2009.

[15] C. Fornell, Larker, and D. F. Evaluating Structural
Equation Models with Unobservable Variables and
Measurement Error. Journal of Marketing Research,
18:39 – 50, 1981.

[16] F. Guay, H. W. Marsh, and M. Boivin. Academic
self-concept and academic achievement:
Developmental perspective on their causal ordering.
Journal of Educational Psychology, 95:124 – 136, 2003.

[17] M. Guzdial. From Science to Engineering.
Communications of the ACM, 54(2):37 – 39, 2011.

[18] J. Hair, B. Black, B. Babin, and R. Anderson.
Multivariate Data Analysis. Psychology Press, NJ,
USA, 7th edition, 2009.

[19] M. Huggard. Programming Trauma: Can it be
Avoided? In Paper presented at the BCS Conference
on Grand Challenges in Computing: Education,
page 50, 2004.

[20] T. Jenkins. Teaching Programming: A Journey from
Teacher to Motivator. In 2nd HEA Conference for the
ICS-LTSN, pages 53 – 58, 2001.

[21] T. Jenkins. On the Difficulty of Learning to Program.
3rd HEA Conference for the ICS-LTSN, pages 1 – 8,
2002.

[22] P. Kinnunen and S. Beth. My Program is OK – Am I?
Computing Freshman’s Experience of Doing
Programming Assignments. Computer Science
Education, 22(1):1 – 28, 2012.

[23] P. Kinnunen and L. Malmi. Why Students Drop Out
CS1 Courses? In Proceedings of the 2006 International
Computing Education Research Workshop, pages 97 –
108, 2006.

[24] P. Kinnunen and B. Simon. Experiencing
Programming Assignments in CS1: The Emotional
Toll. In Proceedings of the 6th International Workshop
on Computing Education Research, pages 77 – 86,
2010.

[25] R. B. Kline. Principles and Practice of Structural
Equation Modeling. New York, NY: The Guilford
Press, 2nd edition, 2005.

[26] D. R. Krathwohl, B. S. Bloom, and B. B. Masia. New
York, NY: David McKay Co, 1973.

[27] I. M. Lyons and S. L. Beilock. When Math Hurts:
Math Anxiety Predicts Pain Network Activation in
Anticipation of Doing Math. PLOS One, 7:e48076,
2012.

[28] E. MacLellan. How might teachers enable
self-confidence? A Review Study. Educational Review,
66(1):59 – 74, 2014.

[29] H. Marsh and A. Martin. Academic Self-Concept and
Academic Achievement: Relations and Causal
Ordering. British Journal of Educational Psychology,
81(1):59 – 77, 2011.

[30] A. McGettrick, R. Boyle, R. Ibbett, J. Lloyd,
G. Lovegrove, and K. Mander. Grand Challenges in
Computing: Education - A Summary. The Computer
Journal, 48(1):42 – 48, 2005.

[31] D. McKinney and L. F. Denton. Houston, We have a
Problem: There’s a Leak in the CS1 Affective Oxygen
Tank. SIGCSE Bulletin, 36(1):236 – 239, 2004.

[32] L. Murphy and L. Thomas. Dangers of a Fixed
Mindset: Implications of Self-Theories Research for
Computer Science Education. SIGCSE Bulletin,
40(3):271 – 275, 2008.

[33] R. Pekrun. The control-value theory of achievement
emotions: Assumptions, corollaries, and implications
for educational research and practice. Educational
Psychology Review, 18(4):315 – 341, 2006.

[34] R. Pekrun and E. J. Stephens. Achievement Emotions:
A Control-Value Approach. Social and Personality
Psychology Compass, 4:238 – 255, 2010.

[35] A.-K. Peters and A. Pears. Engagement in Computer
Science and IT – What! A Matter of Identity? In
Learning and Teaching in Computing and Engineering
Conference, pages 114 – 121, 2013.

[36] L. Porter and B. Simon. Retaining nearly one-third
more majors with a trio of instructional best practices
in CS1. In Proceedings of the 44th ACM Technical
Symposium on Computer Science Education, pages
165 – 170, 2013.

[37] J. Randolph, G. Julnes, E. Sutinen, and S. Lehman. A
Methodological Review of Computer Science
Education Research. Information Technology
Education, 7(1):135 – 162, 2008.

[38] C. Rogerson and E. Scott. The Fear Factor: How it
Affects Students Learning to Program in a Tertiary
Environment. Information Technology Education,
9(1):147 – 171, 2010.

[39] M. J. Scott and G. Ghinea. Integrating Fantasy
Role-Play into the Programming Lab: Exploring the
’Projective Identity’ Hypothesis. In Proceedings of the
44th ACM Technical Symposium on Computer Science
Education, pages 119 – 122.

[40] M. J. Scott and G. Ghinea. Educating Programmers:
A Reflection on Barriers to Deliberate Practice. In
Proceedings of the 2nd HEA Conference on Learning
& Teaching in STEM Disciplines, pages 85 – 90, 2013.

[41] M. J. Scott and G. Ghinea. On the Domain-Specificity
of Mindsets: The Relationship Between Aptitude
Beliefs and Programming Practice. IEEE Transactions
on Education, in print.

[42] B. Simon, B. Hanks, L. Murphy, S. Fitzgerald,
R. McCauley, L. Thomas, and C. Zander. Saying Isn’t
Necessarily Believing: Influencing Self-Theories in
Computing. In Proceedings of the 4th Int. Workshop
on Computing Education Research, pages 173 – 184,
2008.

[43] D. Straub, M.-C. Boudreau, and D. Gefen. Validation
Guidelines for IS Positivist Research. Communications
of the Association for Information Systems, 13:380 –
427, 2004.

[44] A. E. Tew and B. Dorn. The Case for Validated Tools
in Computing Education Research. Computer,
46(9):60 – 66, 2013.

[45] A. E. Tew and M. Guzdial. The FCS1: A Language
Independent Assessment of CS1 Knowledge. In
Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, pages 111 – 116, 2011.

[46] D. W. Valentine. CS Educational Research: A
Meta-Analysis of SIGCSE Technical Symposium
Proceedings. In Proceedings of the 35th ACM
Technical Symposium on Computer Science Education,
pages 255 – 259, 2004.

[47] S. Wiedenbeck. Factors affecting the success of
non-majors in learning to program. In Proceedings of
the 1st Int. Workshop Computing Education Research,
pages 13 – 24, 2005.

[48] A. Wigfield, J. S. Eccles, K. S. Yoon, R. D. Harold,
A. J. A. Arbreton, and C. Freedman-Doan. Change in
children’s competence beliefs and subjective task
values across the elementary school years: A 3-year
study. Journal of Educational Psychology, 89:451 –
469, 1997.

[49] A. Wigfield, Meece, and J. L. Math anxiety in
elementary and secondary school students. Journal of
Educational Psychology, 80(2):210 – 216, 1988.

[50] B. C. Wilson and S. Shrock. Contributing to success
in an introductory computer science course: A study
of twelve factors. SIGCSE Bulletin, 33(1):184 – 188,
2001.

[51] L. E. Winslow. Programming Pedagogy - A
Psychological Overview. SIGCSE Bulletin, 28(1):17 –
22, 1996.

