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Abstract

Tuning game difficulty prior to release requires careful consideration.
Players can quickly lose interest in a game if it is too hard or too easy.
Assessing how players will cope prior to release is often inaccurate. How-
ever, modern games can now collect sufficient data to perform large scale
analysis post-deployment and update the product based on these insights.

AI Factory Spades is currently the top rated Spades game in the Google
Play store. In collaboration with the developers, we have collected game-
play data from 27 592 games and statistics regarding wins/losses for 99 866
games using Google Analytics. Using the data collected, this study anal-
yses the difficulty and behaviour of an Information Set Monte Carlo Tree
Search player we developed and deployed in the game previously [1].

The methods of data collection and analysis presented in this study
are generally applicable. The same workflow could be used to analyse the
difficulty and typical player or opponent behaviour in any game. Further-
more, addressing issues of difficulty or non-human-like opponents post-
deployment can positively affect player retention.

1 Introduction

When deploying an Artificial Intelligence (AI) in a game, it is challenging to
balance the difficulty and the fun suitably to maximise players’ enjoyment. If
the AI is too difficult players will give up and leave the game, too easy and
the players will become bored and quit the game. Somewhere between these
two extremes is a compromise that is essential for successful games [2]. Player
enjoyment is particularly important in mobile games, where player acquisition
is driven largely by user-submitted ratings and word-of-mouth: a few negative
reviews can significantly damage a mobile game’s download figures.

Play testing before deployment can reduce the chances of either of the ex-
treme cases occurring, but cannot guarantee they will not occur. Therefore,
analysing player data from games after the AI was deployed is essential to un-
derstand how the game’s users are coping. Subsequently tweaking the settings
and parameters of the AI with regard to this analysis can positively impact
player retention.

∗This work is funded by grants EP/H049061/1 and EP/K039857/1 of the UK Engineering
and Physical Sciences Research Council (EPSRC).
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Furthermore, if an AI player performs behaviours distinctively uncharacter-
istic of human players, gamers will notice and their enjoyment of the game will
be affected. This occurs often when AI players believe a number of actions have
the same value and, therefore, see no reason to perform a specific one despite
tendencies that are expected by humans. For example, if an AI can assess far
earlier than a player that it has lost the game, it may behave randomly as
it knows all moves lead to a loss. To the human player, however, this appears
irrational as they are not aware they have already won the game. Therefore, col-
lecting data from real users of a game and using this to influence the design and
behaviour of the AI can increase players’ enjoyment by making AI-controlled
opponents and partners more engaging and more human-like.

Previously, we deployed an AI in the game AI Factory Spades [1]. The AI
has been very popular but questions have been raised at times regarding occa-
sional non-human-like behaviour. AI Factory have addressed these complaints
with some success by adding hand-designed and hand-tuned heuristic knowledge
to the AI. However this approach is ad-hoc and relies on expert knowledge of
Spades. To investigate whether a more systematic approach is possible, we col-
lected a significant amount of game data to explore the differences in strategies
employed by real users of the game and the AI we had implemented. This data
also highlighted potential issues regarding the default difficulty of the game.

The contributions of this paper include specific recommendations for future
revisions of AI Factory Spades and insights into good strategies of play for any
instance of the classic card game Spades. More generally, our intention is to
present a detailed analysis of game data from an active and popular commercial
product so that others may be able to recreate this study for their own games.
The methods of data collection we have used can be used with any other mobile
games and the analysis techniques could be used more widely on any game given
access to similar data.

The remainder of this paper is organised as follows. In Section 2, we detail
the relevant background material. Then in Section 3, we discuss the implemen-
tation details of collecting data from the game. Section 4 covers the analysis of
AI difficulty and human/AI play styles. Finally the paper concludes in Section 5.

2 Background

This section covers all necessary background material, starting with details of
the algorithm Information Set Monte Carlo Tree Search used in the AI we have
deployed in Section 2.1. Section 2.2 explains the rules and details of Spades.
Section 2.3 discusses the AI Factory Spades implementation and our previous
collaboration. Finally, Section 2.4 discusses the emerging area of game analytics
and work related to this study.

2.1 Information Set Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a family of game tree search algorithms
invented in 2006 [3, 4, 5] and notable for successes in Go [6, 7], General Game
Playing [8] and many other domains [9]. MCTS combines the precision of tree
search with the generality of random simulation, providing reasonable play in
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the absence of game-specific heuristics and strong (in some cases world champion
level) play when enhanced with some domain knowledge.

A game has imperfect information if the state is only partially observable,
i.e. if there is some aspect of hidden information. Many games of imperfect
information have information asymmetry : different players can observe different
parts of the state. For example in a card game such as Spades, a player can
observe her own cards in hand but not the cards held by the other players.
Games of imperfect information are particularly challenging targets for AI: the
inability to predict the exact outcome of a sequence of moves is a problem for
many tree search methods.

Information Set Monte Carlo Tree Search (ISMCTS) is a variant of MCTS
for games of imperfect information [10]. ISMCTS is based on the idea of deter-
minization: sampling from the set of possible game states that are consistent
with current observations. In ISMCTS, each iteration uses a different deter-
minization, with the result that the statistics collected in the search tree are
averaged over many determinizations. ISMCTS performs well in several games
of imperfect information [10, 11, 12, 1].

2.2 Spades

Spades is a four-player trick-taking card game, especially popular in the USA
but played worldwide [13]. Spades is a partnership game, with North and South
in coalition against East and West. (It is common to name the four players after
the compass points.) Spades has some similarities with, but somewhat simpler
rules than, the game of Bridge.

A game of Spades consists of several rounds. A round begins with each
player being dealt a hand of 13 cards from a standard deck. The players must
then bid on how many tricks they expect to take. A trick consists of each player
in turn playing a single card from their hand. The leader plays first, and the
other players must follow suit if they are able, i.e. they must play cards of the
same suit as the leader’s card. If the player has a void suit, i.e. no cards of the
required suit, then they may play any other card from their hand. Once every
player has played a card, the trick is won by the player who played the highest
ranking card of the same suit as the leader’s card. The exception are ♠ cards,
which are trumps: if any ♠ cards are played in a trick, then the highest ranked
♠ card wins the trick regardless of the suit of the leader’s card. Furthermore,
the leader cannot lead with a ♠ until they have been broken by a player in an
earlier trick within the same round playing one due to having a void suit.

Each partnership’s goal is to win a total number of tricks equalling their
total bid. If the partnership wins at least that many tricks, they receive 10
times their total bid in points; if not, they lose that many points. For each trick
over their total bid, the partnership receives a single point and a bag : for every
10 bags the partnership accumulates, they lose 100 points. A bid of 0, or nil, is
treated differently: in this case the player himself is aiming to win no tricks, and
his partnership gains or loses 100 points depending on whether he is successful
or not. The game ends when either partnership exceeds 500 points, at which
point the highest-scoring partners win.
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2.3 AI Factory Spades

AI Factory1 is a UK-based independent game developer, currently specialising
in implementations of classic board and card games for Android mobile devices.
AI Factory’s implementation of Spades has been downloaded more than 2.5
million times, with an average review score of 4.5/5 from more than 90 000
ratings on the Google Play store2.

AI Factory Spades is a single-player game, in which the user plays with an
AI partner against two AI opponents. The user always plays as South. The
user may choose the partner and opponents from several AI characters. Some
of the parameters in the AI’s heuristics are influenced by the choice of character
(for example some characters are “cautious” while others are “aggressive”), but
the main feature of the character profile is a level rating from 1 to 5 stars which
determines the number of simulations used by the AI player.

There are many variations on the rules of Spades: for example a target
score other than 500 can be used, or players may be allowed to pass cards to
their partners after bidding nil. AI Factory Spades supports these and other
variations.

In previous work [1] we collaborated with AI Factory to implement ISMCTS-
based AI players for Spades. We found that our knowledge-free ISMCTS player
was objectively stronger than AI Factory’s knowledge-based player, but the
non-human-like and sometimes counterintuitive playing style of the ISMCTS
player caused beta testers to perceive the player as weak. It was necessary to
inject heuristic knowledge into the ISMCTS player to produce play that was
perceived as strong, even though this knowledge had no measurable impact on
win rate. However subsequent refinement of the heuristics has produced an
increase in playing strength, resulting in an ISMCTS player that is objectively
and subjectively stronger than the previous AI.

2.4 Game Analytics

The emerging field of game analytics has been growing rapidly as evident from
its coverage in Science [14] and the publication of the first textbook specifically
on this topic [15]. There have also recently been multiple startups dedicated
to providing game analytics as a service and a wealth of job advertisements
requesting data scientists at large AAA games companies. Futhermore, a recent
review of game AI [16] identified large scale game data mining and gameplay-
based player experience modelling as key areas for ongoing research.

In particular, a previous study of Starcraft [17] also considered game data
to advise the design of AI players by modelling human strategies. This work
supports our argument that after the release of a game, it is beneficial to collect
player data to create better AI. However, the authors of this previous study
intended to use the derived model to make harder opponents whilst our aim is
to balance an already deployed AI, making the game more enjoyable and the
opponents more human-like.

Another study [18] used video replays to learn an AI that imitates human-like
behaviour in Quake 2 by combining neural networks and self organizing maps.

1http://www.aifactory.co.uk
2https://play.google.com/store/apps/details?id=uk.co.aifactory.spadesfree&hl=

en
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Our approach differs from this, as we are interested in tweaking an existing AI
not developing a new one. Neural networks and self organizing maps can create
sophisticated AI, as demonstrated by this previous study, but the resultant
model is not easily human readable. The analysis and workflow presented here
is focussed on giving insight into how humans play the game and where the AI
conforms to or deviates from these patterns.

Data collected from Madden NFL 2011 [19] was mined previously to predict
features of a game that would maximise player retention. This study made
various conclusions related to alterations of game mechanics such as reducing
the number of options available to players in game and presenting the controls
more clearly. Unlike our study, they did not explore the effect of AI behaviour
and difficulty as a method of increasing player retention.

The Madden NFL 2011 study also concluded that, whilst the recommen-
dations they presented were specific to the game analysed, their workflow of
analysis was domain independent and, therefore, generally applicable to other
games. We share this motivation and believe that the methods of data collection
and analysis presented in the following sections could be used to increase player
retention in many other games.

3 Data Collection

AI Factory Spades was already a mature released product before data collection
was implemented, so it was essential that the new functionality did not disrupt
the existing game experience or require too much re-engineering. In particular,
AI Factory were keen only to report information that the game already tracked
and stored locally. Additionally, the data is collected via Google Analytics,
which places restrictions on the amount of data that can be reported both in
terms of the number of bytes in an individual “event” and the number of events
per day. Thus it was important both to find a compact data representation
and to limit the volume of data collected. The data is exported from Google
Analytics as a CSV (comma-separated values) file, so the data representation is
limited to printable ASCII characters.

The first time the game is run, it generates a random 32-bit identifier. This
provides a way to identify the player while still retaining anonymity. To reduce
the volume of data collected, games are only reported from player identifiers
where the lowest five bits are all zero, thus for only 1

32 of players. AI Factory
have the ability to tune this proportion at will by altering the bit-mask applied
to the identifier. The only piece of demographic information collected for the
player is their country, which is not used in the present study.

The game keeps track of statistics about the player’s past performance,
namely the number of games they have won and lost with each AI character as
a partner and against each as an opponent. The combination of AI characters
for a game gives a level between 2 and 14: if the star ratings for the opponents
are rw and re and for the partner is rn, then the level is rw + re + (5− rn). The
default setting is rw = re = rn = 5, which corresponds to level 10. It is possible
to achieve the same level with different choices of characters, however the level
gives us a single number to describe the game difficulty that arises from the
strength of the opponents and/or the weakness of the partner. The game tracks
the player’s wins and losses at each level. This information was already tracked
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U:-1498973648# Player ID −1498973648
C:US# Player country (USA)

L8:20-8 Player has won 20 games and lost 8 at level 8
L10:55-50# Player has won 55 games and lost 50 at level 10

Don:26-40-0-0 Player has won 26 games and lost 40 against AI character Don,
but never played with Don as a partner

Mary:24-15-1-2 Player has won 24 games and lost 15 against AI character Mary,
and won 1 and lost 2 with Mary as a partner

· · · More AI character statistics

V:0H9# AI Factory Spades version number
M:15265014# Random seed
L:NA,28,28,28#Y:NA,0,0,0#T:NA,1,1,1# AI settings(Internal Difficulty Rating, Style, Algorithm)
PT:500#TB:100# · · · Game rule settings (score limit, ten bag penalty, etc.)

S1:517#S2:367# North/South won with 517 points to 367
WB:5NB:2EB:3SB:2# Bids for the first round: West=5, North=2, East=3, South=2
W:d148c2wa · · · Sqgp# Card play for the first round, with West leading the first trick

(d = A♥, 1 = 2♥, 4 = 5♥, etc.)
NB:2EB:3SB:6WB:2# Bids for the second round
N:nflprhgk · · · xm9N# Card play for the second round, with North leading the first trick

(n = 10♦, f = 2♦, l = 8♦, etc.)
· · · More rounds

Figure 1: Example of a game record, with explanation of each field. Line breaks
and ellipses have been added for readability; in the actual data, the text in the
left column forms one continuous string.

locally and accessible for the player to view from the game’s main menu.
The events reported to the analytics server are completed games. A game of

Spades consists of several rounds and generally takes between 10 and 60 minutes
to play. Reporting only completed games helps to reduce noise in the data; for
example, users who try the game once and decide they do not like it (or do
not know how to play) are unlikely to play a game to completion because a full
game of Spades takes a significant amount of time. However, reporting only
completed games may introduce some selection bias towards games where the
human player wins or loses by only a narrow margin, as players may decide to
abandon the current game and start a new one if they begin to fall behind.

Upon completion of a game, the following information is sent to the analytics
server:

• The player’s anonymised identifier and country;

• Historical win and loss counts for each game level and for each AI charac-
ter;

• The version number of the game;

• The random seed used for this game (the same pseudorandom number
generator is used for card deals and for ISMCTS simulations);

• Parameters for the chosen AI players;

• Rule settings for this game;

• The final score;

• The sequence of bidding and trick play moves.

An example of a game record is shown in Figure 1. Note that the historical
statistics are sent along with every game. This increases the size of a game
record, but has the advantage that player statistics do not need to be reported
separately from game records.

For the sequence of moves in the game, each of the 52 cards is represented by
a single alphanumeric character. It would be possible to devise a more compact
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encoding than this, but the game records currently are typically smaller than
2kb (well within the limits of Google Analytics event data) and so there is
nothing to gain from making the representation more compact and thus harder
to parse.

The results reported in this paper are based on data collected between
1st April 2013 and 12th November 2013. The data contains 27 592 complete
games, and win/loss statistics for 99 866 historical games, played by 690 unique
players.

4 Data analysis

Using the data collected, we present two analytical studies. The first explores
the difficulty of the game and the difficulty settings chosen by players, whilst
the second looks into understanding how people play the game at the level of
individual moves. Both of these studies give insight into the design of the game
and provide important feedback for possible future AI card game improvements.

4.1 Difficulty and Play Level

Figure 2 shows, for each AI level, the number of players who played at least
one game at that level. By default, the game offers an assignment of partner
and opponents equal to an AI level of 10. We note that 45.5% of players always
changed from the default and completed no games at this level. The slight
majority, however, are content to try this difficulty for at least the duration of a
full game. Therefore, careful consideration should be taken when implementing
the default difficulty to ensure first time players are not immediately thrown
into a game they cannot compete in, but also that more experienced Spades
players do not get the initial impression that the AI is weak.

Figure 3 shows the total number of games played at each AI level. We see
that 59.8% of all games are played at the default level. More games are played
at the default level than at all other levels combined, which again emphasises
the importance of carefully tuning the default difficulty.

We also see a disproportionately large number of games played at the easiest
difficulty level. Five of the 690 players have played more than 180 games each
at this level, with one player having logged 1360 games at level 2 and only two
games at any other level. Presumably these players enjoy the satisfaction of
crushing the weakest AI opponents. However these players are the minority,
with most players opting for a more challenging game.

To explore whether the default level for this game was too high, we did a
significance test for each player using their games at each level to determine
whether they were significantly better, worse or no different on average than
the AI. We consider a game at a particular level to be a Bernoulli trial, and
take the player’s number of wins and total number of games at that level as
numbers of successes and trials. We use these to compute a Clopper-Pearson
interval [20] at the 95% confidence level. If the lower bound is greater than 0.5,
we categorise the player as better than the opponents at that level; if the upper
bound is lower than 0.5 we say the player is worse; otherwise we conclude there
is no difference. Figure 4 shows the proportion of players who fall into each
category for each level. This approach assumes that the skill of a player in a
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Figure 2: Number of players with at least one game at each AI level.
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Figure 3: Total number of games played at each AI level.
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Figure 4: Comparison of player performance at each AI level, classifying players
based on confidence intervals on their win rates. Each bar shows the number
of players classified as better than, no different from and worse than the AI
opponents at that level, as a proportion of the number of players with at least
one game at this level (see Figure 2).

specific level does not change over time. By averaging across all players in a
short time window, the effects of player learning are unlikely to be significant.

At level 10, 25.2% of players are worse than the AI. Therefore, the vast ma-
jority of players will have either a competitive or easy game with the default AI.
Provided it is obvious that the game can be made harder by reducing the abil-
ity of your partner, this should not cause players to think the game is too easy.
However, for those players that are worse than the default AI, losing their first
few games could put them off. Figure 5 suggests this occurs often, as there is a
positive correlation between win rate and average games per player and a high
number of players in the low win rate bin. Given this data, perhaps reducing
the default AI level may be a worthwhile update. Aternatively, the game could
assess the skill level of the player and dynamically adjust the “default” diffi-
culty accordingly. Further work on player modelling and difficulty adjustment
is surveyed in [21].

Furthermore, with due consideration for noise in the data, it appears that
the correspondence between level and win rate (i.e. difficulty) is somewhat lin-
ear. There is probably some bias given that better/worse players might select
easier/hard difficulties and skew the results, but that would have a “flattening”
effect if the bias occurred in the logical direction. Therefore, we conclude the
harder difficulty levels are legitimately harder, even for better players. This
also validates the use of level as a single number to estimate the difficulty of
the game, since the difficulty scales linearly with level despite there being many
different AI character combinations possible at each level. It is still possible
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Figure 5: Comparing win rate of players.

that the difficulty of different choices of AI characters at the same level is not
the same, but the level provides a good indicator of the relative difficulty of two
set-ups provided the difference is sufficiently large.

Next, we filtered the players to those who have played at more than one level,
are in the “no difference” category for at least one level, and either “better” or
“worse” for at least one other level. That is, we consider only players who are
able to make a free choice whether or not they play at a “no difference” level.
For each of these 72 players we looked at the level of their most recently played
game. The majority (47, or 65.3%) chose a level at which they were in the
“no difference” category, with 18 and 7 players choosing “better” or “worse”
respectively. This suggests that most players, given the choice, prefer to play
at a level where they are evenly matched with the AI. The remainder of players
tend to select a level where they can comfortably win, although a small number
of players opt instead for a challenge beyond their current abilities.

Figure 5 shows a histogram of win rates for all players, as well as the aver-
age number of games played by the players in each bin of the histogram. The
histogram suggests a “normal-like” distribution with mean around 40–50%, al-
though spikes at both ends of the distribution show a large number of players
with win rate less than 5% or greater than 95%. The average number of games
played by the players in the less than 5% category is low, indicating that re-
tention of these players is particularly poor. This may be due to players losing
their first few games and then quitting due to frustration, or it may be due to
players unfamiliar with Spades downloading the game, trying it once and then
deleting it.

The average number of games is much higher, although still relatively low, for
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players with greater than 95% win rate. These players are firmly in the “better”
category of Figure 4, but the average number of games suggests that winning
almost every game is not a source of frustration (at least for some players). We
see a general upward trend of average number of games with respect to win
rate. This has three possible explanations: players who consistently lose games
are more likely to get frustrated and stop playing; players become more skilled
the more they play; or players choose AI opponents where they win more than
they lose. The real situation is likely to be a combination of all these reasons.

Figure 6 shows the levels of games played by individual players. The players
in question are the top 25 with respect to number of games played over the data
collection period. We see that 10 of these players only ever play at the default
level 10, with a further two (players 1992713392, fifth row second column, and
1642497472, fifth row fourth column) playing at a constant level other than
the default (levels 11 and 2 respectively). Of the remaining players, only three
(players 2043557440, first row third column, −995744224, third row first column,
and 1880174080, fourth row fifth column) show a clear upward trend in level
over the data collection period, with the other players seeming to switch between
levels more freely.

The analysis in this section shows that a high proportion of players play at
the default level. There is evidence that the default level is too challenging for
some players, causing them to stop playing after losing their first few games.
This suggests that adjusting the default level may improve player retention.
Amongst players who play the game over a longer period of time, some are
content to stick with the default level whilst others switch frequently between
levels. Those who try different AI characters generally settle on a level at which
they are equal to or slightly better than the AI opponents.

4.2 Understanding Human Play Style

To understand human play from the data, it was important to group moves
based on the effect they have in a trick. Playing 10♠ has a significantly different
effect in a trick where it is the highest ♠ still in play than in a trick where A♠
is in play.

Therefore, we assigned all moves into the following, mutually exclusive and
exhaustive, categories of abstract moves:

• Follow Steal: follow suit, and play a card of higher rank than the current
highest card in the trick;

• Follow Duck: follow suit, and play a card of lower rank than the current
highest card in the trick. If a trump card has been played in this trick, all
cards in the trick suit are considered to be in this category;

• No Follow: fail to follow suit, instead playing a card of a non-trump suit
(♥, ♦ or ♣);

• Trump Steal: fail to follow suit, instead playing a trump card (♠). The
card is either the first trump to be played in this trick, or is a higher rank
than the current highest trump card in the trick;

• Trump Duck: fail to follow suit, instead playing a trump card (♠) that
is lower than the current highest trump card;
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Figure 6: Change in game level (y-axis) over games played (x-axis) for individual
players.
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• Lead ♠: begin a trick with a trump card;

• Lead ♥/♦/♣: begin a trick with a non-trump card.

Figure 7 show the frequency with which each category is played, for the
human player and for the partner AI respectively. Each graph shows a total of
3 636 854 moves for the human player and the same number for the AI partner,
over the 27 592 games (279 758 rounds) in our data set. Figure 7 (a) shows the
total number of moves played per category, while Figures 7 (b)–(f) show, within
each category, how frequently the player or AI plays:

• The single card in a category of size = 1;

• The lowest card in a category of size > 1;

• The highest card in a category of size > 1 (if this card is not a boss card
as defined below);

• Some other card (i.e. none of the above) in a category of size > 2;

• A boss card, i.e. a card where no other player can possibly hold a card in
the same suit of higher rank.

Figure 7 shows some interesting similarities and differences between human
and AI play. Specifically, Figure 7 (d) shows that the AI plays “other” moves
much more frequently than humans. Common strategies for Spades often rec-
ommend playing the highest or lowest card that achieves a particular outcome,
whereas the ISMCTS-based AI player has no such bias. The AI player can also
count cards perfectly, so may be able to see in certain situations that playing
the second highest card is equivalent to playing the highest. Furthermore, Fig-
ure 7 (e) shows that the AI player is less likely to duck or no-follow with the
highest card in situations where tricks are not needed. This is a common strat-
egy amongst human players, on the principle that the highest card presents the
greatest risk of taking an unwanted trick later in the round and so should be
discarded as soon as the opportunity arises. However the AI may see that the
highest card can safely be discarded later. From Figure 7 (f), human and AI
players play boss cards with approximately the same frequency, suggesting that
the AI can see the value of such plays. However it seems that the AI plays boss
cards slightly more often, possibly because the AI has a better understanding
of which cards are bosses due to its superior card counting ability.

Figure 7 (e) shows that the AI is more likely to steal with its highest non-boss
trump card. This is an aggressive style of play: while human players seem to
prefer playing their lowest trump (Figure 7 (c)) in an attempt to steal the trick
with a low card, the AI plays higher to have a better chance of taking the trick
or forcing an opponent to play a higher trump card. One of the problems with
our ISMCTS player is that it often cannot see more than one or two tricks into
the future [1], so may be failing to assess the value of holding onto a high trump
card until later in the round. Figure 7 (b) indicates that human players are more
likely to lead a trick with their only card in a non-trump suit. Voiding suits is
generally a good idea as it produces opportunities to discard off-suit cards or
play trumps, and this shows that humans are more likely to engineer situations
where suits can be voided and more likely to do so when the opportunity arises.
It may be that the AI sees voiding as less valuable than the human players.
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Figure 7: Comparison of human and AI usage of abstract moves: (a) shows the
total number of moves played per category, (b)–(f) show,within each category,
how frequently the player or AI plays their (b) only, (c) lowest, (e) highest
non-boss, (f) boss or (d) any other card in that category.
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To gain a deeper understanding of the differences between human players
and the AI, we generated a decision tree to classify what abstract move humans
typically make given the following features representative of the current state
of play:

• Tricks Needed: How many tricks the player needs (assuming the player
is focussing solely on making her own bid);

• Partner Tricks Needed: How many tricks the player’s partner needs;

• Turn Number: Is the player playing 1st, 2nd, 3rd or 4th in the current
trick;

• Can Play Abstract Move: Multiple features, one for each abstract
move crossed with category {single,lowest,highest,other} and {boss,no boss}.

For example, the feature “Can Play Follow Duck Single” means the player
has a single card lower than a card already played of the suit that was led with.
As a move that does not steal or lead a round (i.e. all duck or no follow moves)
cannot be a boss that feature is excluded from this node. For an example node
that does, consider the last node on the far right bottom of the tree; “Can Play
Follow Steal Lowest No Boss”. This node means the player has multiple cards
from the leading suit higher than those already played in the trick but not the
highest of the suit still in play.

The tree (illustrated in Figure 8) was generated using version 2.15 of R [22]
and version 4.1-3 of the package rpart [23]. Rpart is open-source software
based on the now commercialised concept of Classification and Regression Trees
(CART) [24]. The parameters were set as minsplit = 20, minbucket = 7, com-
plexity parameter = 0.01 and maxdepth = 30. These parameters were set
through preliminary experiments on a subset of the data. The 10-fold cross-
validated error rate was 0.430. For comparison, the error rate of a dumb classi-
fier that always predicts the most common class is 0.816.

Some interesting and well advised strategies emerge from the data when
presented in this format. For example, if a player has already won all the tricks
they need this round, a good strategy is to play their highest card in the current
suit that will not win the round. By doing so the player gets rid of cards more
likely to win tricks later in the round, which would incur a higher penalty for
having gone over the player’s bid.

Other strategies apparent from Figure 8 include leading with boss cards
when it is your turn to go first in a trick and have the necessary card to do so.
This strategy will cause a guaranteed win if you are playing the boss ♠, or if
all players have at least one card of the suit you are leading with if playing the
boss ♥, ♦ or ♣.

Interestingly, there is a high preference to play the lowest trump card a
player has that will steal the trick when they have higher valued trump cards
that could do so. This strategy is rational if you are the last player in a trick, as
you are guaranteed to then win the trick whilst simultaneously using the lowest
value card you have to do so. However, within the data analysed, this move
was typically played regardless of the player’s turn in the trick. This may be
representative of players being cautious, unwilling to part with a high valued ♠
in case it gets trumped later in the trick. This strategy also allows the player
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Figure 8: Model of average Human Strategy.
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to force the remaining players to play higher valued ♠ cards or lose the trick.
Doing so can plausibly make the initial player’s remaining ♠ card(s) the boss
and, therefore, a guaranteed trick win later in that round.

Another worthwhile observation is to note that the feature “Partner Tricks
Needed” is not used in the average strategy. This implies that an average player
assumes his partner will meet their own bid. It also shows that average players
typically will not alter their play style in cases where they could assist. Given
that tricks won by the player and their partner are summed at the end of a
round to see if they match the sum of their bids, failing to assist a struggling
partner is a poor strategy. Alternatively, this may have appeared in the average
strategy because information about the number of tricks left to play and the
partner’s moves when the player is playing 3rd or 4th were not included as
inputs. In future work we will test if this has a significant effect on the strategy
captured by the decision tree.

Figure 8 also includes some less expected strategies. In particular, the high
preference to duck in a trick without first considering if you could steal and the
absence of considering to steal with a trump when the player has multiple ♠
cards. This may be caused by flaws in the strategies played (the players are
human after all), more complex Spades strategies incomprehensible to us, or
simply the inaccuracies of the tree.

Overall, in our study we found a decision tree was a useful representation
of human behaviour. The ease of comparing two trees generated from differ-
ent subsets of the data greatly simplified the process of determining typical
behaviours. For example, we also generated a decision tree for only good strate-
gies by reducing the data set based on all of the following criteria being met:

• Only close games or games where the player wins
(FinalScore > 0.9 ∗ TargetScore);

• Only games against tough AI
(AI level >= 10);

• Only games by players that win more than average
(win rate > 0.5).

The resultant tree was very similar to the one illustrated in Figure 8, but
the error rate was significantly higher. This suggests that better players use a
wider variety of strategies. Without a human readable model, such comparisons
would be significantly more complex.

It would be interesting, in further work, to learn different decision trees
for clusters of players found by unsupervised learning algorithms. Previous
work has found different player types in many games using various methods
of clustering [25, 26, 27]. Decision trees, as demonstrated in this paper, are a
suitable representation of play style and could help with the understanding of
the differences between these player types due to the ease of comparing their
human readable model. Clustering players may also give further insight into
different responses to difficulty.
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5 Conclusion

In this study we have collected a large volume of data from the commercial
game AI Factory Spades via Google Analytics. This data was a key resource
for analysing the difficulty of the game, the ISMCTS based AI players and the
strategies of human players.

Our analysis suggests that the default level of AI Factory Spades is too high
and that some players may have been put off by this quickly. It is tempting
to conclude from this that the default level should be lowered. However, doing
so may cause stronger players to assess the AI as weak. This may be even
more harmful in the long run as, in contrast to beginners, experienced Spades
players are more likely to play the game over a long period of time if they enjoy
it (resulting in increased advertising revenue) and are more likely to be vocal
about the product’s strengths or weaknesses in reviews (impacting new players’
decision whether to download the game). A balance must be struck to keep
both groups of players happy.

Adaptive opponents offer a potential solution, but care needs to be taken
that the player’s skill level is being assessed on “fair” card deals. If the AI’s
first few hands of cards happen to be strong, causing a skilled human player to
lose, then the wrong adjustment may be made. Whatever measures are taken
to improve player satisfaction and retention, it will be important to perform
further data analysis to assess the true effect of the changes.

We have presented a number of approaches for analysing the difficulty of a
game that are generally applicable. In particular, the idea of using binomial
confidence intervals as in Figure 4 could be used in any game to provide a
statistically sound method for assessing player strength.

Furthermore, we have observed from the data that the ISMCTS based AI
players behave differently to humans. In particular, the usages of their highest
non-boss cards is significantly different. The ISMCTS based AI player is aware
whether their highest card is the highest of that suit still in play and can,
therefore, make rational choices regarding this. Human players, however, can
get confused regarding this and may think they have a boss card when a better
card is still in play. This suggests a novel method of possibly weakening AI;
causing them to forget or make mistakes when tracking the cards that have
been played before.

We have also modelled a typical human strategy as a decision tree. The
resultant model highlights a number of good strategies for playing Spades, rel-
evant both to the commercial product used to obtain the data and any other
Spades game both digital and card based. In future work these strategies could
be used to influence the behaviour of the AI players, perhaps making them ap-
pear more human. These strategies also may contribute to playing strength as
it demonstrates where humans saw different strategies to those being exercised
by the AI.

As with most card games, Spades is a game of tactical and strategic skill.
Player feedback indicates that satisfaction correlates with difficulty: the appeal
of the game for the majority of players is that the AI provides a competent
partner and challenging opponents. The methods and conclusions of this pa-
per are likely to hold for other similarly strategic games, most notably digital
versions of board and card games but also turn-based and real-time strategy
games. For competitive games where dexterity is a factor (such as first-person
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shooters and racing games) similar ideas could be applied, but the likely result
of this type of analysis would be the need to “dumb down” the AI players to
place the majority of players in the “no difference” category. For games which
are not competitive in nature (such as story-driven action games or arcade-style
games) the “no difference” category tends to be frustrating rather than fun; here
the aim should instead be to ensure the human player is firmly in the “better”
category but feels that getting there was an accomplishment.

This study demonstrates post-deployment analysis of player behaviour for
the fine tuning of AI difficulty and behaviour. The methods presented here
are directly applicable to any strategic competitive game, potentially applicable
with modifications to a much wider class of games, and have the potential to
significantly improve player retention.
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