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Abstract—The General Video Game AI Competition (GVG-
Al) invites submissions of controllers to play games specified in
the Video Game Description Language (VGDL), testing them
against each other and several baselines. One of the baselines
that has done surprisingly well in some of the competitions
is sampleMCTS, a straightforward implementation of Monte
Carlo tree search (MCTS). Although it has done worse in other
iterations of the competition, this has produced a nagging worry
to us that perhaps the GVG-AI competition might be too easy,
especially since performance profiling suggests that significant
increases in number of MCTS iterations that can be completed
in a given time limit will be possible through optimizations to
the GVG-AI competition framework. To better understand the
potential performance of the baseline vanilla MCTS controller, I
perform scaling experiments, running it against the 62 games in
the public GVG-AI corpus as the time budget is varied from about
1/30 of that in the current competition, through around 30x the
current competition’s budget. I find that it does not in fact master
the games even given 30x the current time budget, so the challenge
of the GVG-AI competition is safe (at least against this baseline).
However, I do find that given enough computational budget, it
manages to avoid explicitly losing on most games, despite failing
to win them and ultimately losing as time expires, suggesting an
asymmetry in the current GVG-AI competition’s challenge: not
losing is significantly easier than winning.

I. INTRODUCTION

The General Video Game AI Competition (GVG-AI) [1],
[2] is a recurring videogame-playing competition intended to
stimulate progress in general videogame Al (as distinguished
from Al written for a specific game) by testing submitted Al
agents against previously unseen videogames. Games used in
the competition are written in the Video Game Description
Language (VGDL) [3], a domain-specific language designed
to capture the variety of arcade-style games in which the rules
take the form of sprite movement and interaction on a 2d grid.
In the current competition, games are all single-player, and
may be deterministic or stochastic. The set of unpublished
test games on which agents are scored is periodically replaced
with a fresh set of games, to keep agents from having the
opportunity to even inadvertently become specialized to a
specific reused test set. When a new test set is added, the old
one is released publicly. Therefore a corpus of VGDL games
has slowly grown, currently at 62 public games (as of April
2016).

The 62 VGDL games distributed with the GVG-AI com-
petition framework do represent a specific subset of games—

there is nothing here like chess, Starcraft, or even Tetris. But
within the style of arcade games that VGDL targets, they cover
a fairly wide range of challenges and characteristics, from
twitch-type action games to puzzle games, games with NPCs
and without, games with counter-based, spatial, or time-based
win conditions, and so on.! This makes the corpus useful as
a testbed for investigating differences between algorithms and
games.

The purpose of this paper is to take an extended look at
the performance scaling of one specific algorithm across this
GVG-AI corpus: how the play of vanilla Monte Carlo tree
search (MCTS) improves, or doesn’t, on these 62 games as its
computation budget is increased. The goal of doing so is to
better understand both sides of the pairing: to use the GVG-AI
corpus to look at how MCTS scales with performance across a
range of videogames, and also to use the MCTS performance
curves as a way of characterizing the nature of the challenges
found in the current public set of GVG-AI competition games.

One specific question motivating this scaling experiment
was whether the GVG-AI competition might be too easy. In
the first GVG-AI competition at CIG 2014, the sampleMCTS
controller implementing a vanilla MCTS search, included with
the SDK and intended as baseline, somewhat surprisingly
came in 3rd place, achieving a win rate of about 32%. In
the competitions since then it has not done as well, as both its
competitors and the test games have gotten more challenging;
at CEEC 2015 it did particularly badly, placing 31st with a
win rate of only 12%.2

The poorer recent results do not entirely dispel the worry
about difficulty. The competition tests agents with only one
specific time limit, 40 milliseconds per move. That leaves open
the possibility that the challenge might be mostly posed by
the short time budget. But as hardware gets faster, and the
GVG-AI framework becomes more optimized,> many more
MCTS iterations will be possible to complete within the
same 40 milliseconds. Would the competition then become
too easy, with the sampleMCTS agent making quick work of

A feature matrix comparing the first 30 games is given in Table 1 of [1].

ZPast competition results are taken from the online rankings at http://www.
gvgai.net/.

3Profiling suggests that a large portion of the computation time in the GVG-
Al framework’s forward model is taken up by Java collections bookkeeping;
significant speedups are likely possible by reworking the code here.
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Fig. 1. Number of MCTS iterations versus overall win rate across all trials of the 62 games, shown with both (a) linear and (b) logarithmic x axes. Error
bars, here and in subsequent figures, represent 95% confidence intervals, estimated via a nonparametric bootstrap.

the games?

The experiments here find that the answer is no. Perfor-
mance on the current corpus of 62 games for the sampleM—
CTS agent does improve as computation time is increased from
the current limit. But it plateaus at a win rate of 26% when
given about 10x the current competition’s computation budget,
and doesn’t further improve beyond that (tested out to around
30x). Therefore we can conclude that even after an order of
magnitude increase in speed of the forward model (whether
through hardware improvements or optimizations), the GVG-
Al competition will still pose challenges requiring something
more than vanilla MCTS to tackle them.

I do however find that as MCTS’s computation budget is
increased, the way it plays in the games it loses changes
considerably. In many of the GVG-AI games, failing to achieve
a win within the maximum number of timesteps is a loss. This
is in addition to more explicit ways of losing, such as dying
due to collision with an enemy. As its computation budget
increases, vanilla MCTS manages to avoid most of its explicit
losses—only to end up losing via timeout instead. This makes
sense if we think of many classic arcade games as consisting
of two layers of challenge: avoid dying, and while doing so,
achieve a goal. Vanilla MCTS becomes much better at the first
challenge as it is given time to perform more iterations, but
only slightly better at the second one. This suggests that much
of the future challenge in the GVG-AI competition lies in the
goal-achievement part; vanilla MCTS can mostly avoid dying,
but it often nonetheless can’t win.

II. BACKGROUND AND RELATED WORK

MCTS [4] is an anytime search algorithm: it has a core iter-
ation loop that can be stopped when it runs out of computation
budget, returning the best estimate it has come up with so far.

Given more time, it will generally perform better, but existing
research has found mixed results regarding what that scaling
curve looks like.

Since search trees grow exponentially with depth, there
is some heuristic reason to believe that performance will
scale with the logarithm of computation time, meaning each
doubling of computation time will produce a linear increase
in playing strength. This is indeed what some researchers have
reported, for example on the game Hex [5]. But other experi-
ments, on Go, have reported diminishing returns with repeated
doubling of the computational budget, as performance plateaus
rather than continuing to increase linearly [6]. This paper
supplements the existing knowledge on MCTS performance
scaling by adding results on a fairly large set of single-player
games to the existing studies that have focused on specific
two-player games.

Besides explicit tests of scaling, which are clearly the most
relevant related work, investigating algorithm performance
curves has been used for several other purposes in games.
Togelius and Schmidhuber [7] propose using the performance
curve of a genetic algorithm repeatedly playing a game as a
fitness function to measure game quality: good games, they
hypothesize, are learnable at a moderate pace, leading to mas-
tery neither too quickly nor too slowly. This is a reinforcement
learning formulation rather than a planning formulation, so the
x-axis of their performance curve represents numbers of games
played, rather than time budget within a single game as here,
but nonetheless the ideas are closely related.

Several other researchers have recently used ratios between
different algorithms’ performance on a game, called a relative
algorithm performance profile (RAPP), as part of a game-
quality fitness function [8], [9], [10]. This is based on a
hypothesis that the strength difference between good and bad
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Fig. 2. Average game duration by number of MCTS iterations and win—loss
outcome.

agents playing a game can be used as a proxy for game quality,
or at least as a filter of bad-quality games: a game on which
a random agent performs as well as an agent employing a
smarter strategy likely lacks interesting depth. The single-
algorithm performance curves I investigate here can be seen as
a generalization of RAPPs to look at not only ratios between
algorithms with specific settings (such as random play vs. a
specific MCTS configuration), but also curves with parameter
variation of a single algorithm. Although generating games
is not the purpose of the present paper, properties of an
MCTS performance curve may be interesting to use as part
of a game-generation fitness function. For example, games
where MCTS performance plateaus early, versus late, versus
increases linearly, may pose different types of challenges (at
least, as such challenge is viewed by the MCTS agent).

III. METHODOLOGY

Since I'm investigating the scaling curve of MCTS as its
computation budget is increased, the basic methodology is
simple: have the agent repeatedly play each game in the GVG-
Al corpus starting from a small computation budget, then
double the computational budget and re-run the same trials
on all the games.

Tests were run using a minor variant of the GVG-AI
framework, starting from the April 4, 2016 revision in its
GitHub repository.* I modified the framework to use a limit
on MCTS iterations, rather than a time limit, as the method
of time budgeting. This change was made in order to make
the tests more reproducible. A time limit of, for example, 40

“https://github.com/EssexUniversityMCTS/gvgai

milliseconds or 80 milliseconds per move only produces com-
parable data if run on exactly the same hardware, with system
load and other factors held constant. Since I’'m running a large
number of trials, it was convenient to use cloud-computing
resources to carry out the experiments, an environment where
it’s not possible to assume that every trial will be run on
identical hardware with identical system load. A time budget
of, for example, 32 or 256 MCTS iterations, on the other hand,
is completely reproducible on any hardware.

As a point of reference to anchor the MCTS iteration counts
in this paper with the wall-clock time limit of 40 milliseconds
in the GVG-AI competition, in my tests I found that 40 ms
is enough time to run around 30 MCTS iterations on average,
although this varies significantly depending on the specific
game and hardware. Therefore, since the tests in this paper run
from 1 through 1024 iterations, they represent a time budget
starting at about 1/30 of the current competition’s time budget,
and going up to about 30x.

The specific implementation of vanilla MCTS I test here is
the one included with the GVG-AI SDK as the sampleM-
CTS controller, and described in [1]. It uses an exploration-
exploitation constant of /2 and a play-out depth of 10 moves,
with cutoff states evaluated by giving them a large positive
score if a win, large negative score if a loss, and otherwise
the current point value. I chose this controller because it is
already used as a baseline in the GVG-AI competition, widely
available to every GVG-AI competition participant, and has re-
ported competition results going back several years; therefore
what happens to its performance if the current competition’s
time budget were significantly increased serves as a useful
baseline. There are of course many other things about this
baseline that could be varied; here I vary only the number of
iterations, not any other parameter choices, though doing so
would be interesting future work.

The GVG-AI game corpus includes 62 games, each of which
comes with 5 levels. I run 10 trials of each level, i.e. 50 of each
game, for the tests with MCTS iteration limits of 1 through
64, and (to reduce computational resources needed) 5 trials of
each level, or 25 per game, for the 128-iteration through 1024-
iteration experiments. The difference is visible in the slightly
larger error bars on the higher-iteration-count data points in
Figures 1-3; the data is otherwise completely comparable. For
each of these trials, I record whether the outcome was a win or
loss, and the number of timesteps to end of game. Games are
allowed to run for a maximum of 1000 timesteps. The GVG-AI
framework also defines a point score, but we don’t use it here,
since the MCTS controller is mainly trying to maximize its
wins vs. losses rather than playing for points, and comparing
points across games is often not very illuminating in any case.

IV. REsuLTS

The top-level result is shown in Figure 1, plotting win rate
(across all trials of all games) versus MCTS iteration limit.
This shows a rapid increase in win rate initially, as the iteration
limit is increased from its very low starting point of 1, followed
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Fig. 3. Same data as shown in Figure 1, but reinterpreted as either 3- or 4-valued outcome rather than the 2-valued win/loss outcome. In (a), the three
outcomes are win, loss, or timeout. In (b), whether a game is a win or loss is crossed with whether it was a timeout or not, producing 4 possible outcomes.

by diminishing returns up towards a plateau of about 26% past
the 256-iteration trials.

A. Overall scaling

The version of the win-rate curve with a logarithmic x axis
(b) gives a more detailed look at the scaling properties. The
general expectation that MCTS should scale logarithmically
with increased iterations is partly confirmed: the scaling does
look logarithmic, i.e., linear on the log-axis graph, up until
the plateau past 256, although with some anomalies. There is
a higher slope from 1-4, followed by a lower slope from 16 to
256, interrupted by a strange but significant dip in performance
at 8. The reason for this dip is not entirely clear, but is visible
across a number of specific games as well, when looking at
the results broken down per-game in Figure 4.

The main takeaway from the top-level results is therefore
that overall performance of the sampleMCTS agent would
improve only modestly if the GVG-AI competition’s time
budget allowed for more than the current 30 or so MCTS
iterations, either through increasing time budget or (more
likely) optimizing the code for rollouts: from around 22% to
26% overall win rate. Therefore, my initial hypothesis that the
GVG-AI competition’s challenge might be somewhat illusory,
due mainly to the small time budget and unoptimized code,
is not confirmed: the baseline sampleMCTS agent would
not start dominating the competition even if its time budget
were increased by 10x+. And based on the clear plateau in
performance, it is unlikely to do so even if it were given still
more time than that.

B. Types of wins and losses

While running these experiments, I noticed that experiments
with higher iteration limits were taking much longer to com-
plete, by more than would be expected just from the increased

number of MCTS iterations. Investigating further, the reason
appears to be that when given more computation time, the
MCTS agent plays much longer games. And specifically, its
losses drag out for longer, while its wins stay at about the
same length, as shown in Figure 2.

In fact not only is the MCTS agent playing longer games
in its losses as its time budget increases, but an increasing
proportion of losses come right at the maximum length limit
of 1000 timesteps. This suggests that significant qualitative
changes of play are taking place that are somewhat masked
what looking only at the win-rate results (since long losses
and short losses are still losses). One way of making these
changes more visible in the overall results is to change from
scoring games on a 2-outcome scale of win—loss, to a 3- or
4-outcome scale that treats timeouts when the maximum game
length is reached differently.

Figure 3 reinterprets the overall win-rate data using two
alternate ways of treating timeouts. On the left (a), a 3-
outcome scoring is used, with games resulting in either a win
(within time), a loss (within time), or a timeout, treated as
different from either a win or loss. From this it can be seen
that while wins slowly increase, the biggest swing in overall
performance is that, given more computation time, the MCTS
agent manages to convert losses into timeouts. On the right
(b), the timeouts are further broken down into wins at timeout
and losses at timeout, which shows that the biggest swing is
specifically from losses within time, to losses at timeout.

From this view of the data, the MCTS agent can actually
be said to come close to mastering the GVG-AI games if the
goal were not to lose, with timeouts treated as non-losses:
while its win rate plateaus at a not-that-impressive 26%, it
brings its overall loss-within-time rate down to a mere 22%,
i.e. it manages to avoid explicitly losing (except by timeout)



in 78% of games. This quite large gap in two ways of looking
at what constitutes good performance leads to a hypothesis
that the current GVG-AI competition has two distinct types
of challenges, and a vanilla MCTS agent can master one but
not the other: first, avoid losing, and then, figure out how
to win. As one of this paper’s anonymous reviewers aptly
pointed out, however, what a timeout means varies by type of
game, sometimes indicating partial mastery and other times,
especially in puzzle games, not indicating much success at
all: “It’s an accomplishment to stay alive in Pac-Man even if
you don’t eat all the dots, but it’s not an accomplishment in
Sokoban if you put the blocks in an unwinnable state and then
run out the clock”.

Further study would be needed to clarify the nature of
the challenges posed by the different games. The fact that
controllers do get better at avoiding explicit losses suggests that
there is challenge involved in doing so, but it may be that in
most of the GVG-AI games, winning requires a more complex
policy than avoiding explicit losses does, which the controller
is unable to find. For example, avoiding explicit losses in some
of the games requires only short-term reactive behavior such
as avoiding an enemy, while winning requires putting together
a sequence of steps to achieve a goal. The sampleMCTS
controller’s 10-depth search cutoff would further make it
entirely unable to find winning plans in games requiring longer
sequences of action. This finding also suggests that the choice
of whether a GVG-AI game should result in a win or loss
at timeout has a significant effect on the challenge posed, if
judged by the headline win—loss rate; most of the current GVG-
Al games result in a loss at timeout, but a few result in a win.

The different insight into performance given by looking at
only wins and losses, as in Figure 1, and by treating timeouts
separately, as in Figure 3, suggests that future analyses of
algorithm performance on the GVG-AI corpus may want to
report both measures, in order to provide a fuller view of the
algorithm’s playing strengths and weaknesses.

C. Per-game results

Figure 4 breaks the results down for each of the 62 games,
showing win rate, represented by brightness of the table entry,
as MCTS iterations increase. The table is ordered from top to
bottom by the sum of win rates across all trials for that game,
i.e. games at the top are overall won by the MCTS agent more
often than those at the bottom.

A few noticeable aspects are worth pointing out. First, a
relatively small number of games, about a dozen, are the
only ones that really differentiate performance of the lower-
iteration and higher-iteration MCTS agents. Most games are
insensitive to iterations: in more than half, the MCTS agent
rarely wins, regardless of time budget, and in a few, it mostly
wins even with small time budgets. Only a few games, such as
seaquest and racebet?2, seem to present the MCTS agent
with a difficulty curve, where it performs better as it computes
more. And a few games are completely mastered with increas-
ing iterations: the most stark cliff is for intersection,
which reaches an 100% win rate at mere 4 iterations, but is

not so easy that it can be mastered with only 1 or 2 iterations.
The odd decrease in performance at 8 iterations observed in
the overall results can also be seen in a number of individual
games here, such as plaqueattack and sheriff.

The rather few number of games that show performance
differentiation has implications for uses of algorithm per-
formance profiles as a fitness function in game generation.
Algorithm performance profiles are only a meaningful stand-
in for difficulty curves or challenge depth if we can blame a
lack of performance differentiation in a specific game on the
game rather than the algorithm. The many GVG-AI games on
which vanilla MCTS fails to achieve any win rate at all implies
it may not be a great candidate for use in such fitness functions,
since it will reject many games which do have challenge depth
but which it is simply not able to play.

V. ConcLusioNs AND FUTURE WoORK

The experiments in this paper investigate scaling the base-
line vanilla MCTS controller used in the GVG-AI competition
from about 1/30 of the current competition’s time budget
through about 30x of the current competition’s time budget.
The two purposes of doing so were to better understand MCTS
scaling properties, using the 62 games in the GVG-AI corpus
as the testbed, and to better understand the challenge posed by
the GVG-AI competition.

Regarding scaling, I found performance increased roughly
with the logarithm of increased computation time, although
with some anomalies in the slope, up to a plateau at around
256 MCTS iterations, after which performance did not increase
further. The plateau implies that even massive amounts of
computational power would be insufficient to solve the chal-
lenges in the current competition using the baseline MCTS
agent. This may be due to the 10-depth cutoff in the Monte
Carlo rollouts, or it may be due, as Perez et al. [1] hypothesize,
to suboptimal estimates produced by closed-loop MCTS on
stochastic games.

The initial skeptical hypothesis regarding the GVG-AI com-
petition’s medium-term challenge is refuted by these results.
I had worried that the competition might really be too easy;
that if rollouts were optimized so that agents were given, say,
10x the effective time budget they have now, the competition
might become trivial, with the baseline controller mastering
the games. However, I find that is not the case. Instead, per-
formance plateaus past 256 MCTS iterations, which is roughly
10x the time budget of the current GVG-AIl competition,
and furthermore plateaus at only a 26% win rate. Therefore
the GVG-AI competition would remain interesting, at least
relative to the current baseline, even if orders of magnitude
more computation time were given to the agents entering
the competition, through either an increase in time budget or
optimizations to the framework.

I do however find that quite a lot of change in gameplay is
happening beneath the headline win-rate data. As time budget
is increased, MCTS takes longer to lose the games that it’s
going to lose. And, it often loses them in a qualitatively
different way, by hitting the maximum game length (which
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in many GVG-AI games is a loss through timeout), rather
than succumbing to one of the explicit loss conditions, such
as colliding with an enemy. When the overall results are rein-
terpreted using a 3-valued outcome of win, loss, or timeout,
the vanilla MCTS agent does manage to avoid losses in the
majority of games, at the larger time budgets, bringing its
“non-loss” rate up to 78%—much more impressive than its
26% win rate—with the majority of games ending in a timeout.

This suggests to us two conclusions. First, it may be
helpful to look beyond the headline win rate in the GVG-
Al competition when comparing agents, and treat games that
timeout differently from those where a win or loss is recorded
within time. This provides a fuller view of what the agent
is doing, and which kinds of challenges it is succeeding or
failing at. Secondly, it suggests that in the current corpus of
GVG-AI games, the challenge is structured so that not-losing is
easier than winning. Further work might help clarify why this
is; for example, it may be that in the majority of the games a
relatively simple controller can avoid losing, perhaps with even
a very simple reactive policy like “move away from enemies”,
but more complex planning may be needed to achieve win
conditions. One approach to confirming whether this is the
case could be to solve for optimal policies for several of the
games and investigate their structure.

Future work should look at more algorithms beyond the one
baseline whose scaling properties I test here. In this paper, only
the time budget in the baseline MCTS controller is varied, but
there are many variations of MCTS and quite a few other
parameters that can be varied. MCTS can also be compared
on this corpus with the scaling of other algorithms, such as
traditional full-width search.
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