
Stakeholder Groups in Computational
Creativity Research and Practice

Simon Colton1, Alison Pease2, Joseph Corneli1,
Michael Cook1, Rose Hepworth1 and Dan Ventura3

1 Computational Creativity Group, Department of Computing
Goldsmiths, University of London, UK

ccg.doc.gold.ac.uk

2 School of Computing
University of Dundee, UK

3 Computer Science Department
Brigham Young University, USA

Abstract. The notion that software could be independently and use-
fully creative is becoming more commonplace in scientific, cultural, busi-
ness and public circles. It is not fanciful to imagine creative software
embedded in society in the short to medium term, acting as collabora-
tors and autonomous creative agents for much societal benefit. Techno-
logically, there is still some way to go to enable Artificial Intelligence
methods to create artefacts and ideas of value, and to get software to do
so in interesting and engaging ways. There are also a number of socio-
logical hurdles to overcome in getting society to accept software as being
truly creative, and we concentrate on those here. We discuss the various
communities that can be considered stakeholders in the perception of
computers being creative or not. In particular, we look in detail at three
sets of stakeholders, namely the general public, Computational Creativ-
ity researchers and fellow creatives. We put forward various philosophical
points which we argue will shape the way in which society accepts cre-
ative software. We make various claims along the way about how people
perceive software as being creative or not, which we believe should be
addressed with scientific experimentation, and we call on the Computa-
tional Creativity research community to do just that.

1 Introduction

It seems uncontroversial to state that one of the long-term goals of research
into Computational Creativity is to see creative software embedded in society:
Apple’s iTunes will one day compose new music for us, rather than just recom-
mending it; Microsoft’s PowerPoint will suggest jokes for a speech we’re writing;
videogames will be constructed on the fly to fit our preferences and mood; soft-
ware will routinely make scientific discoveries; and household appliances will be
endowed with creative abilities, like a refrigerator able to concoct a recipe to fit

its contents. It is also uncontroversial to point out that another long-term goal of
the field is to further our understanding of human creativity, both individually
and in societies, through computer simulation.

Computational Creativity researchers have made steady progress towards
software which creates, by employing, advancing and inventing novel Artificial
Intelligence, natural language processing, graphics, audio and other techniques
for creative purposes. There is, of course, much progress still to be made tech-
nically, so that software can be creative and be seen to be creative, in order for
consumers to be provided with valuable artefacts and enjoyable creative expe-
riences. In addition to the technological hurdles faced, it is clear that certain
sociological issues stand in the way of progress. That is, people naturally tend
towards thinking that nuts-and-bolts, bits-and-bytes machines will never have a
creative spark, and di�erent sets of people instantiate this tendency in di�erent
ways. Through much engagement and outreach, we have come to the conclu-
sion that understanding people’s conceptions of software being creative is an
important tool to be used towards the long-term goal of understanding human
creativity, and that favourably guiding these conceptions will be essential in
bringing about the long-term goal of embedding creative software in society.

In largely separate tracks of research, we have examined how creative soft-
ware is perceived by three di�erent types of creativity stakeholders – people who
may have something to gain or lose from software which is creative – from a prac-
tical and a philosophical perspective. We address the di�erent types of creativity
stakeholders in general in section 3, and concentrate in the rest of the chapter
on three particular types. In particular, in section 4, we address members of
the general public exposed to creative software. Following this, in section 5, we
address observer issues within Computational Creativity research itself. Finally,
in section 6 we address videogame designers, as an exemplar of a focused com-
munity of creative individuals within which creative software has begun to make
an impact. We posit that, because of the di�erent issues that each stakeholder
community raises with creative software, it currently helps to study them inde-
pendently, and suggest approaches to altering the perception that people have of
software in these groups in di�erent ways. However, by bringing together these
strands for the first time here, we can begin to discuss more unified approaches
to the presentation of software written to be autonomously creative.

Throughout this chapter, we propose hypotheses about how each set of stake-
holders perceive software as being creative or not, based on practical experiences,
philosophical studies and theoretical advances. We believe that our arguments
in favour of these claims are su�ciently strong for them to be taken to the next
level and tested scientifically through observer-based experimentation – and that
the hypotheses provide an agenda the Computational Creativity research com-
munity cannot ignore. To conclude in section 7, we suggest some practical ways
in which these claims (which are presented as numbered hypotheses) could be
investigated. In order to explain and support the claims we make, in the next
section, we first present a philosophical perspective on the notion of creativity,
which will introduce ideas that underpin the material in the rest of the chapter.

2 A Perspective on Creativity

We hold that creativity is a secondary and essentially contested quality of a
person, and that linguistic usage of terms related to creativity can often be
declarative illocutionary speech acts. We unpack these assertions below. Firstly,
we believe that attributions of creativity are contextualist, having no truth value
which is independent of context, perception and interpretation. In this way we
see creativity attributions as analogous to the Lockean notion of a secondary
quality [40]. Locke distinguished primary and secondary qualities, where the
former are taken to be intrinsic to an object, for example, its mass, and the
latter are understood to be perception-dependent, for example, colour. While
these Lockean qualities are directly tied to sensory perception, as opposed to
the aesthetic and social category of creativity, the distinction is still a useful
one here, since it highlights di�erent types of properties. Dennett’s intentional
stance [23] is also of interest here: we may adopt a “creativity stance” towards
a person and interpret their work as though they were being creative, in order to
better understand (rather than predict) their behaviour. Likewise, we may find
that the “creativity stance” provides a new way of understanding the behaviour
of a piece of software which goes beyond the physical details of the program.

Gallie introduced essentially contested concepts as those for which “the proper
use . . . inevitably involves endless disputes about their proper uses on the part of
their users” [29, pp. 169], to which Gray added that the disputes “. . . cannot be
settled by appeal to empirical evidence, linguistic usage, or the canons of logic
alone” [30, pp. 344], and Smith noted that “. . . all argue that the concept is
being used inappropriately by others” [56, pp. 332]. In the Cambridge Handbook
of Creativity, Plucker and Mabel assert that:

. . . despite the abundance of definitions for creativity and related terms,
few are widely used and many researchers simply avoid defining the
relevant terms at all. [49, p 48]

Clearly, certain notions such as art are essentially contested concepts, looking
at the multitude of articles written each year in the popular and cultural press
asking: “But is it Art?” Indeed, Gallie points out that the statement: “This
picture is painted in oils” can be disputed whilst the disputants nevertheless
agree on the proper usage of the terms involved, whereas the assertion “This
picture is a work of art” is likely to be contested

. . . because of an evident disagreement as to – and the consequent need
for philosophical elucidation – of the proper general use of the term
“work of art” [29, pp. 167].

As a recent example, the question of whether videogames should be classed
as art was raised by a Guardian art critic [33], to which the Guardian games
editor responded:

Here is a good way to tell if a critic is having a moment of madness:
they will attempt to define art. The greatest philosophers in history have
floundered on the question, many simply avoided it altogether, preferring
to grapple with more straightforward questions – like . . . the existence of
God. Art is ethereal, boundless, its meaning as transient as the seasons.
When you think you have grasped it, it slips through your fingers [58].

While this is only one example, it serves as an exemplar of the kinds of debates
that occur daily about the nature of art. While it is true that the preoccupa-
tion with expressing creativity is a relatively modern aspect of the visual arts,
if the notion of art is indeed essentially contested within our culture, then the
notion of the creativity that went into producing a given artwork should be seen
accordingly. In particular, a selection of criteria for what counts as creativity is
required in any coherent scheme for understanding and evaluating creativity in
art. This is the perspective advanced by Jordanous [34], with which we agree
– although we also agree with her point that there is unlikely to be broad and
lasting agreement about just what the precise criteria of creativity actually are.
We can further justify the idea that proper usage of the term creativity involves
endless debate about its proper usage by reference to the multitude of volumes
written about improving, managing and assessing creativity in people, organi-
sations and society. Indeed, as a society, we are better o� if we do not agree
about what creativity means – in the sense that the disputes we have about this
are an engine for change and progress, and it would surely be stultifying if we
all suddenly agreed on this most important of concepts. While it is problematic
for various areas of study – not least Computational Creativity – that creativ-
ity is an essentially contested quality of any person, it is something we need to
embrace and even celebrate. For more in-depth discussion of these issues, see
Jordanous [34, chapter 3]. We may ask, in practice, what does it mean to say
someone or something is “creative”? Austin informally introduced the notion of
an illocutionary act as a locution that also serves to perform another action [4].
Searle further categorised such speech acts into: assertives, directives, commis-
sives, expressives and declarations [54]. Declarations in particular are understood
to change reality in accordance with the proposition stated. An example of such
a speech act is: “I pronounce you husband and wife.” We believe that – in cer-
tain circumstances – people can bestow the reality of a person being creative
simply by stating it. To see this, we recall the contested nature of creativity, and
the assumption that there is no general consensus about what makes someone
creative. It follows that people who are not particularly invested in the creativ-
ity (or lack thereof) of someone else may be swayed by the declarative speech
act of a third party in a position of authority. When Nicholas Serota, long time
director of the Tate art museums and galleries, says that a piece is a great work
of art, that work becomes (at least temporarily) a great work. When he states
that a particular artist is unusually creative, who are we to argue? Given that
the sentence ‘X is creative’ is often shorthand for: ‘Most people agree that they
perceive X to be creative’, such authorities can essentially bring into being the
creativity of X, regardless of whether X perceives him/herself as creative or not.

3 Communities of Creativity Stakeholders

In order to understand the di�erent groups of creativity stakeholders, the re-
lationships between them, and the ways in which meaning is continually being
created, negotiated and re-created, we can look to sociology. In Latour’s Actor
Network Theory [37], he describes such stakeholders and diverse social groups
as actors in a network. Meaning is created socially via actors who cluster into
diverse stakeholder groups. These groups are in constant flux, as relationships,
actors and ideas within the groups change and come into conflict with each other.
Latour holds that understanding such dynamics in the network is essential to
understanding processes of innovation and knowledge-creation in science and
technology. The process by which a network is formed and comes to be repre-
sented as a single entity is called translation, and is a key concept in the Actor
Network Theory. Translation consists of various phases: the initial formation of
a programme and identification of actors in a new network with a novel, shared
goal (problematisation); the strengthening of the network via formal and informal
means (interessement); ways of evolving the network and providing structures
for new members to join (enrolment); and acquiring the resources and power to
build an e�ective institution which can achieve its goal (mobilisation).

In the case of Computational Creativity, relevant creativity stakeholders
include researchers, the wider AI community, funding bodies, experts in the
psychology of human creativity, neuroscientists, artists, art critics, journalists,
philosophers, educators, the public, and so on. Each group has accompanying
visions, beliefs and goals, in which they have, to a varying degree, invested (and
which, to a varying degree, define them as a group). We hold that understand-
ing such di�erent perspectives and their interactions is essential if software is
ever to be deemed creative by mainstream consumers of cultural artefacts. In
this section, we consider these stakeholder groups and in particular use Latour’s
notion of translation to look at how Computational Creativity researchers have
evolved into a community. We also look at some of the relationships between the
groups, both in the context of Computational Creativity and the wider scientific
arena.

3.1 The Computational Creativity Stakeholders

Members of the Computational Creativity community are largely people with
a background in Artificial Intelligence or computer science and an interest in
creativity. They are usually professional academics with the infrastructure of a
university supporting them. AI is itself a young field – originating in the 1950s
– and, since initial attempts to build general intelligence machines, has frag-
mented into many di�erent specialisations and subdisciplines: once established,
these then form the internal environment for any new area, in terms of providing
ideas, methods and concepts, and at times, competition. Academic measures of
the health of such subdisciplines include the amount of funding awarded, the
number of lectureships or professorships in the field, the existence of a jour-

nal and an international conference series, and other scientifically respectable
incentivisation schemes and recognition.

It was against this backdrop that AI researchers with an interest in creativity
found themselves in the late 1990’s. Given their background, they were not only
accustomed to the idea that machines can be intelligent, but their very livelihood
depended on that premise. So it was not, perhaps, such a huge leap to the idea
that machines can be creative. However, since there was no infrastructure sup-
porting research into Computational Creativity, early researchers largely had to
establish their reputation in di�erent (possibly related) areas of AI and build up
the Computational Creativity community almost on their own time, sometimes
taking considerable career risks to do so.

Latour’s notion of translation can help us to understand how the community
formed. Problematisation occurred when a few core people identified the goal
of building creative software as a subdiscipline of AI. Between them, they had
the influence and organisational power to make Creativity in AI and Cognitive
Science the theme of the AISB’99 Convention (co-chaired by Geraint Wiggins,
Helen Pain and Andrew Patrizio). This featured a keynote address by Margaret
Boden, a cognitive scientist known for her popular writing on creativity in peo-
ple and in machines [5,6]. The initial symposium was followed up by four further
events1 held at AISB’00 - AISB’03, and a series of workshops on creative systems
at major AI conferences. We present an extract from the editors’ introduction
to the Proceedings of the Symposium on Creative and Cultural Aspects of AI
and Cognitive Science, held at AISB in 2000 in figure 1 below. This was the in-
teressement phase. These were further consolidated with the International Joint
Workshops on Computational Creativity (IJWCC), held 2004-08, during which
time the community grew from twenty, or so, to double that (enrolment). Fi-
nally, the community was considered healthy enough, strong enough and large
enough to launch the first International Conference on Computational Creativ-
ity in 2010. For a history of the field up to this stage, see [8] in a special issue of
the AI magazine on Computational Creativity.

The community continues to evolve and grow, with the series having recently
held its Fifth Annual International Conference (2014), with around 90 delegates.
In order to organise and guide the international series, a Steering Committee was
set up consisting of anyone who had chaired an IJWCC event, and they formed
the Association for Computational Creativity (ACC) in 2010 and set out rules
which enabled new members to join and old members to leave the Association
(mobilisation). Landmark events during this time included the first ever award
of a Chair in Computational Creativity (to Geraint Wiggins, in 2004, by Gold-
smiths, University of London) (only one of two - the other being held by Simon
Colton also at Goldsmiths, University of London, awarded in 2013); the first
PhD with Computational Creativity in its title (Anna Jordanous, University of
Sussex, 2012 [34]) and the first NSF and EU calls for proposals in Computational
Creativity (CreativeIT, NSF Program Solicitation 09-572 [1] and Objective ICT-

1 Creative and Cultural Aspects of AI and Cognitive Science (2000) and then simply
AI and Creativity in Arts and Science (2001 - 2003)

Fig. 1. An excerpt from the preface of the Proceedings of the Symposium on Creative
and Cultural Aspects of AI and Cognitive Science, held at AISB in 2000, written by
Geraint Wiggins. Note the ‘natural’ emergence of themes within the field, although
of course these are very much subject to the Call for Papers, the communities who
received the call, the instructions given to the reviewers, the reviewers themselves and
the editor’s vision.

2013.8.1, Technologies and scientific foundations in the field of creativity [2, p.
81]). The process has been carefully managed throughout, with an eye on po-
litical as well as intellectual developments. Social factors have also played a key
role, being inextricably linked to internal development of scientific knowledge
[38].

3.2 Other Creativity Stakeholders

Each of the other stakeholder groups will have a similarly fascinating history.
Some, such as the EU funding body, are tightly bound and have a formal def-
inition of themselves and their goals. Others, such as the general public – for
whom the concept of translation is meaningless – are much more loosely defined.
Of note is who the decision makers are in each of these groups. In the Com-
putational Creativity community, it is clear that a few people have had a huge
influence, and it is likely that this is also the case for other groups of stakehold-
ers. It may be worth considering these in detail, especially from a point of view
of motivation and power. For instance, Boden’s way of seeing creativity domi-
nated the first decade of the community growth. Likewise, a few core individuals
working for the EU had the influence to prioritise research into Computational
Creativity, and to fund around e10m worth of projects.

• The general public

When describing what they do, to a layman, most researchers into Computa-
tional Creativity will probably have experienced reactions such as: “A computer
that is creative might be dangerous – it might kill us”; “Creativity is a celebra-
tion of humanity, and the very idea of Computational Creativity cheapens that”;

“I read a poem or listen to music to communicate with another human being. I
don’t want to communicate with a computer, I want a live human connection”,
and so on. It is important to determine where these ideas come from, whether
they are grounded in anything, whether we should try to counter them, and if so,
how? While such emotional responses are not necessarily negative, it might be
the case that they hinder reasoned debate. Public perception of Computational
Creativity derives from multiple sources, including journalistic coverage (or lack
of it), science fiction narratives, opportunities to consume computationally cre-
ated artefacts and so on. We look further at observer issues in the general public
in section 4 below.

• Fellow creatives

Creative people sometimes voice the worry that “Computers are going to put us
out of a job”. This group is similar to the general public in terms of influences
and attitudes. It seems that artists might be being encouraged to worry about
software replacing them, because such sensationalist stories sell newspapers. We
study a particular community of creative people, namely videogame designers in
section 6 below.

3.3 Relationships Between the Di�erent Stakeholder Groups

There have been several interactions between the Computational Creativity com-
munity and members of the public and fellow creatives. For instance, Colton and
Ventura hosted a festival of Computational Creativity in 2013, You Can’t Know
my Mind [10], and other events have followed on from this. Historical relation-
ships between scientists and the public can also elucidate current interactions.
In other fields, there have been some explicit campaigns to manufacture doubt,
by parties who are threatened by specific scientific advances. For instance, the
tobacco industry tried to discredit and discourage the notion that smoking is
bad for our health; likewise the fossil fuel industry did the same in the case of
global warming. Here we see that a few powerful actors can sometimes bring an
entire body of established scientific knowledge into question.

Ravetz argues that scientific ignorance may in some ways be as prone to so-
cial construction as scientific knowledge [50,51], cited in [57, p. 37]. Stocking and
Holstein [57] explore di�erent perceptions that journalists have of their roles, con-
cluding tentatively that journalists construct scientific ignorance consistent with
their own interests. Even without such dark agendas, there are other examples
from the history of science in which public perceptions conflict with scientific
thinking and have been managed, or controlled, in order to bring them into
line with current scientific results. Famous examples in which scientific advances
have challenged our image of ourselves and our universe include Copernicus’s
heliocentric model, which challenged our view that the earth is the centre of
the universe; Darwin’s theory of evolution, which challenged concepts of what
it means to be human, to be distinct from other animals, and the notion that
our existence has a higher purpose; and Lemaître et al.’s Big Bang theory, which

challenged the view that the universe is a stable, stationary entity. In all of these
cases the scientists faced their own challenges of reconciling their findings with
their religious or world views, and then a process of outreach was necessary in
order to gain wider social acceptance. Thus, we see Thomas Huxley – “Darwin’s
bulldog” – promoting Darwin’s theory in the face of many varied and negative
responses to it (some of which are recorded in [25]) and helping it to gain wider
acceptance, transitioning from scientific to social fact. Today, people in the fields
of genetically modified food and stem cell research endeavour to gain wider social
acceptance in the form of media coverage and well-funded outreach programmes
aimed at educating both school children and the wider community.

Computational Creativity is in a particularly di�cult position, since its main
research question concerns an essentially contested concept. On certain under-
standings, the question “can machines be creative?” may be answered nega-
tively, without further elaboration or debate. Thus, we see part of the job of
the Computational Creativity community consisting in the delivery of outreach
programmes, in which creative software is demonstrated and explained, and the
artefacts it has produced exhibited in a setting in which consumers of creative
artefacts might begin to appreciate them. In [28], Franzen et al. explore the im-
pact that such dissemination activities can have on scientific progress, and argue
that the right name, image or metaphor has the power to make or break relations
between a scientific discipline and the public. For instance, consider Dolly the
sheep from the Roslin Institute in Edinburgh and Ida the primate fossil from
the Messel Pit in Germany. These names make it easier for the discoveries to
be visualised and discussed. Arbib and Hesse go further, stating that “scientific
revolutions are, in fact, metaphoric revolutions” [3, p. 156], cited in [27, p. 5].

In addition, then, to sociological narratives, it is important to consider lan-
guage use by each stakeholder group. The role of spin doctors is well-known
in the political arena, in which those who bestow power are influenced in their
thinking by vocabulary, metaphors and frames. In our case, the public have the
power to bestow or withhold the word “creative” when describing software. Thus,
we need to consider the language that we use. Lako� [35] argues that we fit new
information into pre-existing frames, which are built up slowly over time, and
if we don’t have appropriate frames, then we might misunderstand the informa-
tion. Using the wrong frame, which is triggered by specific vocabulary, even to
deny a message, only reinforces the frame. Thus, rather than trying to argue
that “creative software is not scary”, we should build up our own vocabulary,
frames and metaphors for thinking about it.

Hypothesis 1 Di�erent stakeholder groups (including Computational Creativ-
ity researchers, the general public, domain creatives, psychologists, philosophers,
educators, critics, journalists, bureaucrats, etc.) assess creativity in software dif-
ferently, and there is no one-size-fits-all approach to presenting what software
does and what it produces in the best way to increase perception of creativity.

Given this, we believe it is currently appropriate to study stakeholder groups
separately, as we do in the following sections.

4 Observer Issues with the General Public

We introduce here three notions, namely essential behaviours, the humanity gap
and software accounting for its actions. We believe these are important in under-
standing how people generally react to the idea of software being creative, and
thus are important in managing and shaping those reactions. To end the section,
we present a case study in handling public perception of creativity in software,
and we introduce another notion, namely that of accountable unpredictability.

A working definition of the field of Computational Creativity research as a
subfield of Artificial Intelligence research given in [21] is as follows:

The philosophy, science and engineering of computational systems which,
by taking on particular responsibilities, exhibit behaviours that unbiased
observers would deem to be creative.

While this definition is not universally accepted (with a challenge to focus on
system-level creativity rather than individual responsibilities given in [32]), vari-
ations of it have been used to describe the field for many years.

The usage of the word ‘unbiased’ in the above definition hints at a problem
encountered in evaluating projects where generative software produces artefacts
(poems, paintings, sonatas, recipes, theorems, etc.) for human consumption. In
particular, people generally have natural biases against, but also occasionally in
favour of, artefacts produced by computers over those produced by people. In
particular, negative, so called ‘silicon’, biases have been observed under experi-
mental conditions [24,43]. Hence, in stipulating that observers must be unbiased,
the definition above emphasises a scientific approach to evaluating progress in
the building of creative systems, whereby experimental conditions are imposed to
rule out, or otherwise cater for, such biases. One such experimental setup is the
Turing-style comparison test, where computer-generated and human-produced
artefacts are mixed and audience members make choices between them with
zero context given about the processes involved in their production. It is seen
as a milestone moment if audiences cannot tell the di�erence between the arte-
facts produced by people and those produced by a computer. We believe there
are many problems in the application of such tests in the general context of
presenting the processing and products of creative software, as expanded in the
subsections below.

4.1 Essential Behaviours

We suggest not asking people if they believe software is behaving creatively, but
rather concentrating on whether they perceive the software to be acting uncre-
atively. Using our standpoint above that the notion of creativity is essentially
contested [29], we expect that no matter how sophisticated our software gets,
we will not see consensus on such matters. However, we have found that people
agree much more on notions of uncreativity: if a program doesn’t exhibit certain
behaviours onto which certain words can be projected, then it is easy to condemn

it as being uncreative. Building on the foundational arguments given in [14], we
propose that audience members can too easily label software as uncreative if
they are unable to project any of the following words onto the behaviours they
perceive software to be exhibiting:

skill, appreciation, imagination, learning, intentionality,
accountability, innovation, subjectivity and reflection

We have found that assessing the level of projection of these words onto
the behaviours of software can help us to gauge people’s opinions about (the
lack of) important higher-level aspects of software behaviour, such as autonomy,
adaptability and self-awareness. Note that we make no claim about the above
behaviours being su�cient for a perception of creativity: a necessary set of be-
haviour types for avoiding the uncreativity label is not the same as a su�cient set
of behaviour types for gaining the creativity label. This mis-interpretation of our
aims for highlighting the above essential behaviours has propagated somewhat,
for instance in [7].

Hypothesis 2 Creativity in people and software is essentially contested and
secondary, and hence it might be advantageous to work on people’s perception of
uncreativity in software, as this is easier to predict/manage. Software exhibit-
ing the essential behaviour types highlighted above is necessary for it to avoid
being labelled as uncreative. Eventually, when there are no good reasons to label
software as uncreative, people may choose to label it as creative.

4.2 The Humanity Gap

One could argue that, given the particularly human-centric nature of creativity,
and that a human connection is paramount in much of the arts, it is simply
inappropriate to use the term ‘creative’ to describe software. The status quo is
that we currently haphazardly apply human terminology related to creativity
to software, which often requires the projection of other human qualities onto
software, such as it being juvenile, which is inherently error prone, given that
computers are patently not people. Another option is to ignore the non-human
nature of software and concentrate on what it produces, rather than on what
it is, or what it does. To begin to address the kind of silicon biases described
above, researchers often compare the interpretation of computer-generated and
human-produced artefacts in a rather extreme “blind experiment” situation in
which knowledge about the personality of the artist and their practice is entirely
missing. The philosophical grounding of such an approach [59,60] matches the
motivation of several art movements [26,36] and many individual artists who
have expressed a desire for their work to be taken at face value (see [17] for
examples and further discussion).

We argue that in modern culture, a curious thing can happen when artists
attempt to remove all reference to themselves and their process from discussions
about the artistic (and commercial) value of their work. That is, in the absence

of such information, people may tend to fill in the gaps about personality and
process, and may do so in ways which bolster the credibility of an artist and
increase the perceived value of his/her works. Indeed, one could argue that – in
the same way that artists invite people to interpret the imagery in artworks in
their own way by not prescribing what people should see/read/hear, in refus-
ing to provide meta-level details about personality and process, artists, writers
and musicians are actually (purposefully or not) inviting art lovers to invent
interesting and engaging back-stories about who they are and what they do.

In such a context of non-disclosure, the comparison of the situation for
computer-generated artefacts with the situation for human-produced artefacts
is not particularly favourable. The vast majority of people have little or no idea
about programming or programs, and may even harbour a desire not to find out
about these things. Thus, when invited to assess a computer generated painting
or poem, say, without background knowledge, they are denied any opportunity
to invent a back-story, as they cannot project personality traits or romantic
situations onto the computer, and cannot enter into any dialogues. More impor-
tantly, this situation can lead to people realising how much they value the human
connection, whether actual or imagined, in such situations. We posit that there
is a humanity gap that must be faced by Computational Creativity researchers
who want their software to enhance society by being creative for artistic and
utilitarian purposes.

Turing-style experiments, which epitomise the practice of non-disclosure, are
intended to reduce variables so that a scientific study of the value of computer
generated artefacts can be undertaken. One could argue that these contexts are
intended to help people realise how much they value the aesthetic appeal of art,
literature and music, regardless of other factors. This may be true, but we believe
that such tests can actually help people realise how little they can relate to the
computational origin of artefacts. In [46], we raise other issues with Turing-style
comparison studies: in particular, we suggest that they encourage naïvety and
pastiche generation in creative software. As a final point, it is clear that such
experimental conditions are not sustainable if we are to enhance society with
creative software. In the long term, biases about machine creation need to be
embraced and managed, rather than factored out through experimental setups.

Hypothesis 3 Turing-style comparison tests serve to highlight the humanity
gap, and while they might serve short-term scientific gain, they are damaging to
the long-term goal of embedding creative software in society.

4.3 Software Accounting for its Actions

We argue in [9,14] that people take into account how a person or software oper-
ates when they assess the value of the output it produces. To address this issue,
we advocate a development path to follow when building creative software: (i)
the software is given the ability to provide additional, meta-level, information
about its process and output, e.g., giving a painting or poem a title (ii) the soft-
ware is given the ability to write commentaries about its process and its products

(iii) the software is given the ability to write stories – which may involve fictions
– about its processes and products, and (iv) the software is given the ability
to engage in dialogues with people about what it has produced, how and why.
Indeed, giving software the ability to discuss its creative works would mirror
Turing’s original proposal for an intelligence test [59] to a greater extent than
tests focusing only on consumer perception of artefacts. As a preliminary exam-
ple, in [18], we demonstrated a poetry generation system which is able to provide
commentaries about its poetry, and how and why it produced a particular poem.

As we discuss in [47], in a computational setting, there are advantages to
software being immersed in environments where serendipity might occur. How-
ever, accounting for lucky events that trigger creative acts may actually lessen
the celebration and hence the impact that the acts have. It is important to note
that people tend not to describe their processes and products in the explicit way
we advocate for software, preferring to maintain some level of mystery. Neverthe-
less, we believe that, at this stage in the development of computationally creative
systems, it is important to address the humanity gap – without aspiring to elim-
inate it. Framing [9] serves to highlight that intelligent processing was used to
produce artefacts, which is an important first step. Given that audience mem-
bers will typically not be able to come up with an interesting backstory without
some sca�olding, positive acts of framing are likely to have more fruitful impact
than an overall air of mystery.

Another possible way to address the humanity gap is to manage people’s
expectations about the level of humanity they will encounter through a compu-
tationally produced artefact. In the same way that when people buy an e-book
they know they are not going to get a physical object, we advocate telling audi-
ences that they are reading a c-poem, and hence – in the knowledge that it was
produced computationally – they will get a reduced human connection. We can
go further in re-imagining traditional artefacts, for instance in suggesting that
a c-poem is actually a doublet of texts, one which resembles a traditional poem
and another which provides a commentary about the motivations, actions and
results of the software’s processing. We believe this will highlight the human-
ity gap, but that it will do so in such a way as to help people to engage with
and appreciate the creative process, and better enjoy the artefacts produced by
software.

Hypothesis 4 The humanity gap can be addressed by re-imagining the nature
of creative artefacts, to manage expectations of humanity. In particular, it is
advantageous for software to account for its processes and products through ad-
ditional material such as a commentary.

4.4 A Case study in Automated Portraiture

As part of an exhibition with The Painting Fool2 system [16] in 2013, we enabled
the software to produce portraits for people live in a gallery, as described in [10].
2 Online presence: www.thepaintingfool.com

www.thepaintingfool.com

Fig. 2. Example commentary by The Painting Fool, from the You Can’t Know my
Mind exhibition, Paris, June 2013.

Managing the expectations and perceptions of the observers was a key aspect of
this project. To this end, we hung posters describing the behaviour of the software
as exhibiting aspects of intentionality, imagination, skill, appreciation, reflection
and learning (six of the essential behaviours described above). Moreover, the
software’s actions and output were tailored to support the perception of these
behaviours and an impression of creativity in the software by observers present
in the exhibition, especially those sitting for a portrait.

Portraits were painted with people sitting in front of a laptop. It was im-
mediately made clear that (i) the software was modelling a ‘mood’ to direct its
painting, and (ii) the sitter was very much a tool for the software, not the other
way around. This was achieved by opening remarks from the software such as:
“Thank you for being my model. I’m in a negative mood right now, so I would
like you to express a sad emotion.” This was followed by The Painting Fool ex-
plicitly directing the sitter, while video recording them. A still image was then

extracted where the sitter was expressing an emotion. Machine vision techniques
were applied to remove the background, into which was substituted one of 1,000
abstract art images, to which one of 1,000 image filters was applied. The fil-
ter was chosen to increase the chances that the resulting image might reflect
a changing simulated mood gained through reading newspaper articles, as de-
scribed in [10]. The same filter was applied to the face of the sitter placed in the
foreground, producing in a few seconds an image conception, or sketch for the
portrait, such as the first image of figure 2.

Following this, a canvas appeared on screen, and a hand holding either a
pencil, paint brush or pastel stick made virtual marks on the canvas leading to a
non-photorealistic rendering of the background and foreground of the portrait,
taking between 2 and 10 minutes, depending on the style. An example portrait
is given at the bottom of figure 2, which was printed and given to the sitter,
along with the commentary (the whole of figure 2). The most important aspect
of the commentary is the expression of intention, by first showing a conception
of the type of portrait the software aimed to produced, then showing what it
produced and finally analysing and criticising – using machine vision techniques
described in [44] – its results with respect to its aims.

The purpose of the exhibition was cultural, not scientific, and no experi-
mentation was undertaken. From our experience, however, we contend that the
behaviours exhibited by the software and explained in poster form enabled peo-
ple to be surprised by the resulting portrait (and many of the 100 or so sitters
in the exhibition were very surprised), while still projecting creativity onto the
software. This upheld the aim of the You Can’t Know my Mind exhibition: as
it used some intelligence, and could explain its actions, it was somewhat appro-
priate to employ the word ‘mind’ with reference to The Painting Fool. However,
as the process was unpredictable due to the dynamic nature of the software’s
changing mood, it was impossible to know this mind, and people realised that
some software is written not to be a tool, but to be a creative individual. In
fact, when in the most negative of moods, The Painting Fool refused to paint a
portrait and sent the (often shocked) sitter away, citing a particularly depress-
ing keyphrase in a particularly distressing newspaper article that it had recently
read.

In these cases, The Painting Fool pointed out explicitly: “No random numbers
were used in coming to this decision”. This is because we feel that accountable
unpredictability is important for creative systems. That is, we have found that
when people realise that a certain important event has happened or an important
artefact has been produced because of a random act, any dialogue (perceived
or real) comes to an abrupt halt, and detracts from the creative experience. In
contrast, unpredictability through accountable actions such as reading newspa-
per articles can add a great deal to a creative experience, at the very least by
providing additional talking points.

Hypothesis 5 Accountable unpredictability enhances the experience people have
when told about software creating an artefact, whereas random number based
unpredictability detracts from the experience.

5 Formally Capturing Progress in Creative Systems

Naturally, another major set of stakeholders in the notion of software being
creative are the Computational Creativity researchers who aim to write such
systems, and use them to study creativity in people and machines. As they are
familiar with the issues of simplistic arguments for and against creativity in
software, these stakeholders require more formalism in any argumentation put
forward to support the hypothesis of increased creativity in software.

We have focused on formalising the general notion of progress in Computa-
tional Creativity research. To do this, we first introduced the FACE and IDEA
descriptive models in [19] and [45]. The FACE model categorises generative acts
by software into those at (g)round level, during which base objects are pro-
duced, and (p)rocess level, during which methods for generating base objects
are produced. These levels are sub-divided by the types of objects/processes
they produce: Fg denotes a generative act producing some framing information,
Ag denotes an act producing an aesthetic measure, Cg denotes an act producing
a concept and Eg denotes an act producing an example of a concept. Generative
acts producing new processes are defined accordingly as Fp, Ap, Cp and Ep. Tu-
ples of generative acts are collated as creative acts, and various calculations and
recommendations are suggested in the model with which to compare creative
systems. We developed the IDEA model so that creative acts and any impact
they might have could be properly separated. We defined various stages of soft-
ware development and used an ideal audience notion, where people are able to
quantify changes in well-being and the cognitive work required to appreciate a
creative act and the resulting artefact and/or process.

The majority of researchers develop software using only themselves as an
evaluator, because observer-based models are too time-consuming to use on a
day-to-day basis. These informal in-house evaluation techniques generally do not
capture the global aims of the research project, or of the field (e.g., producing
culturally important artefacts and/or convincing people that software is acting
in a creative fashion). This can lead to situations where systems are presented
as feats of engineering, with little or no evaluation at all [34]. In [20], we ar-
gue that assessing progress is inherently a process-based problem, and hence
we concentrate our formalism on processes, tempered with aspects of artefact
evaluation. In the subsections below, we present this formalism with worked ex-
amples, followed by a case study describing the development of an evolutionary
art system.

5.1 Formal Assessment of Progress

We combine the most useful aspects of the IDEA and FACE models, the list
of essential behaviours described in section 4.1, and certain aspects of assessing
artefact value in a diagrammatic formalism for evaluating progress in the build-
ing of creative systems. We focus on the creative acts that software performs, the
artefacts it produces and the way in which audiences perceive it and consume
its output. We simplify by assuming a development model where a single person

or team develops the software, with various major points where the program
is su�ciently di�erent for comparisons with previous versions. We aim for the
formalism to be used on a daily basis without audience evaluations, to determine
short term progress, but for it also to enable fuller audience-level evaluations at
the major development points. We also aim for the formalism to help determine
progress in projects where there are both weak and strong objectives, focused,
respectively, on the production of increasingly higher valued artefacts, and on
increasing the perception of creativity people have of the system. We found
that the original FACE model didn’t enable us to properly express the process
of building and executing generative software. Hence another consideration for
our formalism is that it can capture various timelines both in the development
and the running of software in such a way that it is fairly obvious where the
programmer contributed creatively and where the software did likewise.

5.2 Diagrammatic Capture of Timelines

Taking a realistic but abstracted view of generative software development and
deployment, we identify four types of timeline. Firstly, generative programs are
developed in system epochs, with new versions being regularly signed o�.
Secondly, each process a program undertakes will have been implemented during
a development period where creative acts by programmer and program have
interplayed. Thirdly, at run-time, data will be passed from process to process in
a series of creative and administrative subprocesses performed by software and
programmer. Finally, each subprocess will comprise a sequence of generative or
administrative acts.

We capture these timelines diagrammatically: the four di�erent kinds of tran-
sitions are highlighted with coloured arrows in figure 3(a). The blue arrow from
box – to — represents a change in epoch at system level. The red arrows over-
lapping a process stack represent causal development periods. The green arrows
represent data being passed from one subprocess to another at run-time. The
brown arrows represent a series of generative/administrative acts which occur
within a subprocess. Inside each subprocess box is either a < creative act >
from the FACE model (i.e., a sequence of generative acts), or an [adminis-
trative act] which doesn’t introduce any new concept, example, aesthetic or
framing information/method. Administrative acts were not originally described
in the FACE model, but we needed them to describe certain progressions dur-
ing software development. For our purposes here, we use only T to describe a
translation administrative act often involving programming, and S to describe
when an aesthetic measure is used to select the best from a set of artefacts.
We employ the FACE model usage of lower-case letters to denote the output
from the corresponding upper-case generative acts. Furthermore, we extend the
FACE notion of (g)round and (p)rocess level generative acts with (m)eta level
acts during which process generation methods are invented. As in the original
description of the FACE model, we use a bar notation to indicate that a par-
ticular act was undertaken by the programmer. We use a superscripted asterisk
(ú) to point out repetition.

(a) < A1, A2 >

< G1, G2 >

< A1, A2 >

< A1, A2 >

< A1, A2 >

< A1, A2 >

–

< A1 >

< A1 >

< A1 >

< A1 >

< A1 >

< A1 >

< A1 >

< A1 >

< A1 >

—

< Cg >

< Eg >

ú

< Ag >

[S(ag(eg))]

P1

< Cg >

< Eg >

ú

< Ag >

T (ag)
[S(ag(eg))]

P2

< Cp >

ú

< Cg, Eg >

ú
< Ag >

H1

< Cm >

< Cp >

[T (Cp)]
< Cg, Eg > < Ag >

H2

(b) (c)

Fig. 3. (a) Key showing four types of timelines (b) progression of a poetry system
(c) progression of the HR system.

As a simple example diagram, figure 3(b) shows the progression from poetry
generator version P1 to P2. In the first version, there are two process stacks,
hence the system works in two stages. In the first, the software produces some
example poems, and in the second the user chooses one of the poems (to print
out, say). The first stack represents two timesteps in development, namely that
(a) the programmer had a creative act < Cg > whereby he/she came up with
a concept in the form of some code to generate poems, and (b) the software
was run to produce poems in creative acts of the form < Eg >ú. The second
stack represents the user coming up with an idea for an aesthetic, e.g., prefer-
ring lots of rhyming, in creative act < Ag >, and then applying that aesthetic
ag him/herself to the examples produced by the software, in the selection ad-
ministrative act [S(ag(eg))], which maps the aesthetic ag : {eg} æ [0, 1] over the
generated examples, and picks the best one. In the P2 version of the software,
the programmer undertakes the translation act [T (ag)], writing code that allows
the program to apply the rhyming aesthetic itself, which it does at the bottom
of the second stack in box P2.

Figure 3(c) shows a progression in the HR automated theory formation sys-
tem [12] which took the software to a meta-level, as described in [11]. HR operates
by applying production rules which invent concepts that categorise and describe
input data. Each production rule was invented by the programmer during cre-
ative acts of the type < Cp >, then at run-time, HR uses the production rules

to invent concepts and examples of them in < Cg, Eg >ú acts. In the meta-HR
version, during the < Cm > creative act, the programmer had the idea of getting
HR to form theories about theories, and in doing so, generate concept-invention
processes (production rules) in acts of the form < Cp >. The programmer took
meta-HR’s output and translated it via [T (Cp)] into an implemented production
rule that HR could use, which it does at the bottom of the stack in box H2.

5.3 Comparing Diagrams and Output

Examining the transition from one epoch-level diagram to another should pro-
vide some shortcuts to estimate audience reactions, especially when these are
linked to strong objectives. As with the original FACE model, the diagrams
make it obvious where creative or administrative responsibility has been handed
over to software, namely where an act which used to be barred has become un-
barred, i.e., the same type of generative act still occurs, but it is now performed
by software rather than programmer. For instance, this happened when the S
became an S in figure 3(b) and when the Cp became a Cp in figure 3(c). At the
very least in these cases, an unbiased observer would be expected to project more
autonomy onto the software, and so progress in the strong sense has likely hap-
pened. In addition, the diagrams make it obvious when software is doing more
processing in the sense of having more stacks, bigger stacks or larger tuples of
acts in the stack entries. Moreover, the diagrams make it clear when more varied
or higher-level creative acts are being performed by the software. All of these
features have the potential to convince audience members that software is being
more sophisticated, and can be taken as a preliminary indicator of progress.

When dealing with actual external evaluation, where people don’t know
what the software does, we suggest that the diagrams above (or verbalisa-
tions/simplifications of them) can be used to describe the software to audience
members, to explain what the software does, and what the programmer has
done in the project. Audience members can then be asked whether they would
project any of the essential behaviours from section 4.1 onto any of the creative
acts undertaken by the programmer or by the system. Thus, one method for
estimating progress from version v1 of a creative system to version v2 that takes
into account features of both processing features and artefact quality would be:

– show audience members the diagrams for v1 and v2 as above, and explain
the acts undertaken by the software, then

– show audience members the output from v1 and v2, and,
– ask each person to compare the pair of product and process for v1 with that

of v2.

A statistical analysis could then be used to see whether the audience as a whole
evaluates the output as being better, worse or the same, and whether they think
that the processing is better, worse or the same in terms of the software seeming
less uncreative.

< Cp, Ep >

< Cg, Eg > P

1

< Cp, Ep >

< Cg, Eg >

ú

< Ag >

[S(ag(eg))] P

2

< Cp, Ep >

< Cg, Eg >

ú

< Ag >

[T (ag)]

[S(ag(eg))] P

3
< Cp, Ep >

< Cg, Eg >

ú

< Ag >

[S(ag(eg))]

< Ag >

[T (ag)]
[S(ag(eg))] P

4

< Cp, Ep >

< Cm, Em >

< Ep >

< Cg, Eg >

ú

< Ag >

[S(ag(eg))]

< Ag >

[T (ag)]

[S(ag(eg))] P

5

< Cp, Ep >

< Cg, Eg >

ú

< Ap >

< Ag >

[S(ag(eg))] P

6

< Cm, Em >

<Cp,Ep>

< Cg, Eg >

ú

< Ap >

< Ag >

[S(ag(eg))] P

7

< Cm, Em >

< Cm, Em >

< Cp >

< Ep >

< Cg, Eg >

ú

< Ap >

< Ag >

[S(ag(eg))]

< Fp >

< Fg > P

8

Fig. 4. The progression of an evolutionary art program through eight system epochs,
taken from [20].

5.4 A Case study in Evolutionary Art

Evolutionary art – where software is evolved which can generate abstract art –
has been much studied within Computational Creativity circles [53]. Based on
actual projects which we reference, we hypothesise here the various timelines
of progress that could lead from a system with barely any autonomy to one
with nearly full autonomy. Figure 4 uses our diagrammatic approach to capture
three major lines of development, with the final (hypothetical) system in box
8 representing finality, in the strong sense that the software can do very little
more creatively in generating abstract art. Since features from earlier system
epochs are often present in later ones, we have colour-coded individual creative
acts as they are introduced, so the reader can follow their usage through the
systems. If an element repeats with a slight variation (such as the removal of
a bar), this is highlighted. Table 1 is a key to the figure, which describes the
most important creative and administrative acts in the systems. Elements in
the key are indexed with a dot notation: system.process-stack.subprocess (by
number, from left to right, and top to bottom, respectively). System diagrams
have repetitive elements, so that the timelines leading to its construction and
what it does at run-time can be read in a stand-alone fashion.

Following the first line of development, system 1 of figure 4 represents an
entry point for many evolutionary art systems: the programmer invents (Cp) (or
borrows) the concept formation process of crossing over sets of mathematical
functions to produce o�spring sets. He/she also has an idea (Ep) for a wrapper
routine which can use such a set of functions to produce images. He/she then
uses the program to generate (Cg) a set of functions and employ the wrapper
to produce (Eg) an image which is sent to the (P)rinter. The crossover and
subsequent image generation is repeated multiple times in system 2, and then

ID Event Explanation

1.1.1 Cp The programmer invents the idea of crossing over two sets of mathe-
matical functions to produce a new set of mathematical functions.

1.1.1 Ep The programmer implements a wrapper method that takes a set of
mathematical functions and applies them to each (x, y) co-ordinate
in an image to produce an RGB colour.

1.1.2 Cg The software generates a new set of functions by crossing over two
pairs of functions.

1.1.2 Eg The software applies these functions to the (x, y) co-ordinates of an
image, to produce a piece of abstract art.

2.2.1 Ag The programmer had in mind a particular aesthetic (symmetry) for
the images.

2.2.2 S(ag(eg)) The programmer uses his/her aesthetic to select an image for printing.

3.2.2 T (ag) The programmer took their aesthetic and turned it into code that can
calculate a value for images.

3.2.3 S(ag(eg)) The software applies the aesthetic to select one of a set of images
produced by the software.

4.3.1 Ag The software uses machine learning techniques to approximate the
programmer’s aesthetic.

4.3.2 T (ag) The programmer hand-translates the learned aesthetic into code.
4.3.3 S(ag(eg)) The software applies the new aesthetic to choosing the best image

from those produced.

5.1.2 Cm The programmer has the idea of getting the software to search through
a space of wrapper routines.

5.1.2 Em The programmer implements this idea.
5.1.3 Ep The software invents a new wrapper.
5.4.2 T (ag) The software translates the machine-learned aesthetic itself into code.

6.2.1 Ap The programmer has the idea of getting the software to invent a
mathematical fitness function.

6.2.2 Ag The software invents a novel aesthetic function.
6.2.3 S(ag(eg)) The software selects the best image according this aesthetic.

7.1.1 Cm The programmer has the idea of getting the software to invent and
utilise new function combination techniques, generalising crossover.

7.1.1 Em The programmer implements this idea so that the software can invent
new combination techniques.

7.1.2 Cp The software invents a novel combination technique.

8.4.1 Fp The programmer has the idea of getting the software to produce a
commentary on its processes and the images it produces.

8.4.2 Fg The software produces a commentary about its process and product.

Table 1. Key to figure 4.

the programmer – who has invented (Ag) their own aesthetic – chooses a single
image to print. In system 3, as in the poetry example above, the programmer
translates their aesthetic into code so the program can select images. This is a
development similar to that for the NEvAr system [41].

Following the second line of development, in system 4, the programmer selects
multiple images using his/her own aesthetic preferences, and these become the
positives for a machine learning exercise as in [39]. This enables the automatic
invention (Ag) of an aesthetic function, which the programmer translates by
hand T (ag) from the machine learning system into the software, as in [15], so
the program can employ the aesthetic without user intervention. In system 5,
more automation is added, with the programmer implementing their idea (Cm)
of getting the software to search for wrappers, then implementing this (Em),
so that the software can invent (Ep) new example generation processes for the
system.

Following the final line of development, in system 6, we return to aesthetic
generation. Here the programmer has the idea (Ap) of getting software to mathe-
matically invent fitness functions, as we did in [13] for scene generation, using the
HR system [12] together with The Painting Fool [16]. In system 7, the program-
mer realises (Cm) that crossover is just one way to combine sets of functions, and
gives (Em) the software the ability to search a space of combination methods
(Cp). The software does this, and uses the existing wrapper to turn the functions
into images. System 8 is the end of the line for the development of the software,
as it brings together all the innovations of previous systems. The software in-
vents aesthetic functions, innovates with new concept formation methods that
combine mathematical functions, and generates new wrappers which turn the
functions into images. Finally, the programmer has the idea (Fp) of getting the
software to write commentaries, as in [18], about its processing and its results,
which it does in generative act Fg.

Tracking how the system diagrams change can be used to estimate how au-
diences might evaluate the change in processing of the software, in terms of the
extended creativity tripod described above. Intuitively, each system represents
progress from the one preceding it, justified as follows:

1 æ 2: < Cg, Eg > æ < Cg, Eg >ú

Simple repetition means that the software has more skill, and the introduction
of independent user selection shouldn’t change perceptions about autonomy.

2 æ 3: S æ S

By reducing user intervention in choosing images, the software should appear to
have more skill and autonomy.

1 æ 4: Introduction of Ag and S(ag(eg)) acts

Machine learning enables the generation of novel aesthetics (albeit derived from
human choices), which should increase perception of innovation, appreciation
and learning, involving more varied creative acts.

4 æ 5: Introduction of an Ep act, T æ T

Wrapper generation increases the variety of creative acts, and may increase per-
ception of skill and imagination.

1 æ 6: Introduction of Ag and S(ag(eg)) acts

The software has more variety of creative acts, and the invention and deployment
of its own aesthetic – this time, without any programmer intervention – should
increase perception of intentionality in the software.

6 æ 7: Introduction of a Cp act

Changes in the evolutionary processes should increase perceptions of innovation
and autonomy.

5, 7 æ 8: Introduction of an Fg act

Framing its work should increase perceptions of accountability and reflection.

With all strands brought together, the programmer does nothing at run-time
and can contribute little more at design time. The software exhibits behaviours
onto which we can meaningfully project words like skill, appreciation, innova-
tion, intentionality, reflection, accountability and learning, which should raise
impressions of autonomy, and make it di�cult to project uncreativity onto the
software.

Hypothesis 6 The diagrammatic formalism given above – or some extension
of it – is su�cient to capture the creative acts performed in building and running
any kind of generative software. Moreover, when this is used alongside audience
evaluation of the artefacts produced, a formal assessment of progress in creative
software development can be achieved.

6 Software as part of a Creative Community

For each domain in which creative software operates, there is a community of
people who have a stake in the notion of whether software working in that domain
is perceived as creative. As described in this section, we have recently started to
embed our software in such a community, for various reasons, including the study
of how people react to it and to the work that it produces. These experiments will
form part of a larger study of how people accept (or not) creative technologies
that undertake activities which used to be the purview of people only.

6.1 Accountable Subjectivity

Applying aesthetic judgements and expressing preferences are important kinds
of activity that contribute to the perception of a person or piece of software as
being creative. Aesthetics and preferences allow a creative entity, be it a person

or software, to express founded judgement (even if we regard the judgement as
worthless, or subjectively ‘wrong’) on creative artefacts, both those created by
the entity itself and those created by others. It can also serve as a driving force
behind future creation, allowing someone to work towards goals that they have
set themselves and strengthening claims of intentionality.

Despite this, little work has been done to build systems which can generate
aesthetic preferences of their own and apply them intelligently. One reason for
this may be the uncomfortable clash between the subjective and the objective
that so often a�ects research in Computational Creativity. The notion of ‘opti-
mality’ in many creative domains, particularly those associated with the arts,
is a contentious one and leads to much criticism of systems which attempt to
quantify the quality of an artefact. The idea of having a system quantify the
quality of an opinion on creative artefacts is equally controversial, if not more
so. Similarly, in the past, the question of how to quantify the degree to which a
system is creative was also a subjective and controversial task. In this case, re-
searchers such as Ritchie found it useful to use metrics which dealt with abstract
notions of creativity without directly laying out objective measures of quality for
any particular artefact or medium. Ritchie’s criteria are described in [52], and
have been used in many evaluations of creative systems in a variety of di�erent
fields and media.

We propose here a similar set of criteria which apply to aesthetics or pref-
erences rather than creative systems. By using abstract metrics, we can avoid
talking about aesthetic measures in objective ways, while retaining a meaningful
vocabulary with which to describe di�erent kinds of aesthetics. These metrics
can be used to evaluate aesthetic comparator functions, namely binary functions
which take two examples of a type of object, and then return -1, 0 or 1 depending
on whether the first object is preferred less, the same as, or more than the second
object. Assuming we have an aesthetic function f , and a set of objects the func-
tion expresses a preference over, O, we define the following criteria which can
be used to di�erentiate aesthetic functions from one another. Note that these
metrics do not necessarily represent a linear gradient of quality – di�erent types
of aesthetic function may be desirable in di�erent scenarios.

The first metric is specificity. Specificity captures the degree to which the
aesthetic represents a total order over the set of objects O. If an aesthetic can
o�er a definite preference (that is, a nonzero result) for many of the objects,
it will have a high specificity, and vice versa. High-specificity aesthetics might
suggest the aesthetic is experienced or well-developed in some way, if it is able
to make clear distinctions between many di�erent artefacts.

The second metric is transitive consistency. This captures how self contra-
dictory the aesthetic function is. Suppose we have three artefacts: A, B and C,
and our function f . We can write A < B to indicate that B is preferred to A.
We might expect that if A < B and B < C then A < C. Transitive consis-
tency measures what proportion of O this holds for. In some scenarios, we might
want a high transitive consistency, as this indicates a lack of contradictions in
the preferences being expressed. However, in some scenarios, preferences can be

complex and multi-objective, and it might be the case that transitivity does not
hold for highly subjective opinions about artefacts produced by creative acts.

The third metric is agreement. Instead of being expressed in terms of a single
aesthetic function, agreement is expressed about two di�erent aesthetics, which
we can call f and g. Agreement measures the proportion of the object set O that
f and g agree on. This can be strict, in which case f and g must return exactly
the same value for two objects to be said to agree. Alternatively, agreement can
be non-strict, in which case f and g can either return the same value, or one
of the functions can return zero (no preference) to be said to agree. Informally,
agreement lets us assess how closely two aesthetic functions are aligned with each
other. Of course, they may be in close agreement for very di�erent reasons – this
metric simply establishes similarity in the result of the subjective judgements.

Hypothesis 7 The perception of creativity in software which produces artefacts
within a creative community will be increased if the software can exhibit subjective
judgements about its own work and that of others, and defend those judgements
in an accountable way. This can be seen as part of a bigger picture of software
exhibiting a personality, in order to be accepted into a creative community.

6.2 A Case Study in Automatically Designed Videogames

A game jam is a contest where entrants attempt to make a videogame from
scratch in a short period of time, normally with the added restriction of a theme
which developers must incorporate into their game somehow. Ludum Dare is one
of the largest regularly occurring game jams in the game development commu-
nity, taking place three times a year and garnering over 2,000 entries in December
2013, where developers were given the theme ‘You Only Get One’. The AN-
GELINA system is an automated videogame designer developed to investigate
issues surrounding Computational Creativity in a ludic and interactive context
[22]. Many di�erent versions of ANGELINA have been developed, working with
various di�erent kinds of game, technologies and user guidance. The most re-
cent iteration, ANGELINA-5, was designed to enter game jams, by allowing it
to be given just a theme in plain text as a starting point. This theme is then
interpreted by ANGELINA-5 and used to influence the design of the game.

ANGELINA-5 entered Ludum Dare for the first time in December 2013, the
28th edition of the event. One of the objectives was to investigate the reactions
of various groups of people to a piece of creative software entering such a con-
test. To gain more insight into these groups, we entered two games designed
by ANGELINA-5 to Ludum Dare 28. In the first submission, To That Sect3,
we included a commentary generated by ANGELINA-5 to illustrate the actions
of the system, as well as multiple paragraphs describing the research behind
ANGELINA-5 and identifying the game as the creation of a piece of software.
In the second submission4, we anonymised ANGELINA-5’s commentary to re-
move references to it being software-based, edited it for grammar, and added
3 To That Sect game: www.tinyurl.com/tothatsect

4 Stretch Bouquet Point game: www.tinyurl.com/stretchpoint

www.tinyurl.com/tothatsect
www.tinyurl.com/stretchpoint

To That Sect Stretch Bouquet Point Jet Force Gemini
Overall 36 29 23

Fun 34 30 26
Audio 73 43 74

Graphics 43 33 36
Mood 77 39 80

Innovation 64 33 59
Theme 32 30 26

Humour 48 59 51

Table 1. Percentile rankings for ANGELINA-5’s two games entered into Ludum Dare
28, and its single entry to Ludum Dare 29 (Jet Force Gemini). Note that higher per-
centile rankings indicate higher achievements. There were 780 submissions in the LD28
track, and 1004 entries in the LD29 track.

no supplementary explanation about the software, the origin of the game, or
anything to connect the game with a digital author. The ratings process for
Ludum Dare takes place in the 22 days following the contest, and is conducted
as a peer review system, where each entrant is asked to rate and review games
by other entrants. Ratings are given as marks out of five for eight categories:
Audio, Graphics, Mood, Theme, Humour, Fun, Innovation and Overall.

The results for the two entries by ANGELINA-5 can be seen in table 1. While
we were unable to get specific vote data, we do know that 70 people rated To
That Sect, the non-anonymised submission, while 26 people rated Stretch Bou-
quet Point5. While it is impossible to calculate confidence intervals for these
ratings without the vote data, we can see that they di�er by hundreds of posi-
tions for some categories such as Mood and Audio. We can also see a noticeable
di�erence in the comments left by some of the reviewers underneath both sub-
missions, in terms of their tone and attitude when dealing with each game. Many
commentators indirectly criticise the anonymised game, with comments such as
“You made me feel something there. Don’t make me put it into words though”.
Other commentators made more obvious statements of criticism or praise, such
as “This was a rather annoying experience” or “This game feels dreamy. The
audio is intense.” Only one comment included both praise and criticism. We
attribute the indirect or sarcastic comments to an unwillingness to potentially
criticise a person for performing poorly, even though other reviewers were less
tactful. Ludum Dare is often used as a learning experience for amateur develop-
ers, and many children enter using simple game creation tools. We believe many
reviewers felt uncomfortable with direct criticism for this reason.

By contrast, comments on To That Sect were more balanced in nature, often
o�ering both praise and criticism in equal amounts, e.g., “Angelina seems really
good at creating an atmosphere with both sound and visuals. But the game

5 This is due in part to ANGELINA-5’s small following on the internet, which pro-
moted the non-anonymised submission more than normal.

part of it seems a bit lacking still”. In the description of the game, we asked
people to rate it as they would any other Ludum Dare entry, hoping to dissuade
people from reviewing the concept of ANGELINA-5 rather than the game itself.
Nevertheless, many reviewers suggest that their scores were influenced by their
appraisal of ANGELINA-5 as a novel system, rather than what it was capable
of creating, e.g., “creating a program to create your game . . . [is] certainly not
something you see every day. On that front alone, this gets a lot of points for
innovation”. These results suggest that reviewers were unable to separate the
creator from the artefact, and were incapable of reviewing the game as if created
by a person. For instance, To That Sect rated 282nd of 780 for Innovation. These
ratings are subjective, and it is hard for us to objectively assess them. However,
we do not believe there is anything particularly innovative about To That Sect.
As such, we must attribute this high ranking to reviewers assessing the game as a
product of ANGELINA-5. It seems that reviewers projected (human) innovation
in the ANGELINA project onto the game it produced.

We can compare the results of ANGELINA-5’s debut in Ludum Dare with the
results garnered from a second entry to the game jam in April 2014, Ludum Dare
29. This time ANGELINA-5 was only entered into the game jam once, with the
game Jet Force Gemini, created in response to the theme Beneath The Surface.
As with the non-anonymised entry in Ludum Dare 28, Jet Force Gemini was
entered with a commentary describing some of the decisions contributing to the
design process. Table 1’s rightmost column shows the results for Jet Force Gemini
in contrast to the entries in Ludum Dare 28. The number of entries in Ludum
Dare 29 was nearly 30% larger than Ludum Dare 28; ANGELINA’s percentile
scores drop for four of seven specialised categories, and fall dramatically in the
Overall rating.

We believe this is evidence of the relationship between the observers and
ANGELINA shifting over time. While some of the comments underneath Jet
Force Gemini indicate that the reviewer is encountering ANGELINA-5 for the
first time (which is unsurprising, since the number of reviewers account for less
than 1% of total Ludum Dare entrants) others explicitly note that they are
reviewing ANGELINA-5’s games for a second time. One states that ‘I’m sorry
to say that I can’t really see improvements from last time’, indicating that there
is either an expectation of growth on the part of the software, or an expectation
that the software’s author will grow the software over time. Despite many of
the other comments being generally positive, the drop in ratings suggests that
people perhaps feel less compelled to rate ANGELINA-5 highly for novelty value
alone. Given that Ludum Dare is a community built on the idea of improving
creative skills through regular practice, it is interesting to note the expectation
of growth shown by some reviewers. We hypothesise that this may be a factor
which is particularly important for creative individuals in assessing creativity,
as opposed to other types of observer.

We can also examine reactions to particular elements of ANGELINA-5’s work
and compare it to critiques of similar games. One comment on To That Sect
states “If it [had] added shooting at the statues that you must avoid and a goal

how much ships you have to collect, it would have been better. It felt like playing
[an] ‘art-message’ type of game”. LITH 6 is a game entered into the competition
by a human designer, where the player navigates a maze and collects bags of gold
coins, while avoiding patrolling robots. They can escape to an exit at any stage,
with their score being the amount of gold collected. While not an exact duplicate,
the rules of LITH are very similar to those of To That Sect, i.e., search for as
many objects of a certain type as possible, while avoiding another object, then
exit. LITH was entered in the same track as ANGELINA-5’s games, and ranked
95th Overall, 125th for Fun, and 274th for Theme. None of the comments on
LITH reference the game’s rulesets in a critical way. Notably, LITH ranks 259
places above To That Sect for Theme. This is significant, as the LITH designer
justifies its theme in a fairly thin way, by saying simply that the player only
has one opportunity to save their score (which they do by ending the game, as
in To That Sect). The games are by no means identical: LITH ’s level is more
closed in to accentuate a feeling of claustrophobia, but the similarities are many.
This analysis suggests a fundamental di�erence in how people evaluate a game
when they have knowledge and when they have no knowledge of its designer and
design process.

Hypothesis 8 There can be both positive and negative biases at work when peo-
ple consume artefacts in the knowledge that computers created them. By man-
aging both cases in a creative community context, we can increase perception of
software as being creative and enjoyment of the artefacts produced. This increase
will be further fuelled if the software shows clear growth in sophistication in the
field, and expresses this through its processes and products.

7 Conclusions and Future Work

Simply stated, one of the main aims of research into Computational Creativity
is to one day see creative software properly embedded into society. To achieve
this aim, larger sectors of society need to join the e�ort, including creative com-
munities within the arts and sciences, the creative industries, technology firms,
and the next generation of Artificial Intelligence researchers. Hence, we need to
convince certain sets of stakeholders that creative software is no fantasy, but
a potential reality that will bring benefits to society. As described above, we
have studied three sets of stakeholders, namely the general public, fellow Com-
putational Creativity researchers, and a specific community of creative people,
namely videogame designers. These studies have enabled us to make concrete hy-
potheses related to how stakeholder communities perceive creativity in software,
and how best to manage that perception in the future. Based on our immersion
in the stakeholder communities mentioned, we have argued above in favour of
the truth of the hypotheses, with extended discourse and argumentation given
in [17] and [20] amongst other papers. We believe it is now time to turn the
6 LITH game: www.tinyurl.com/lith-ludum

www.tinyurl.com/lith-ludum

hypotheses into experiments designed to see whether the ways in which sets of
stakeholders perceive and react to creative software fit our beliefs.

Our first hypothesis is pitched somewhat at a meta-level, in that it pro-
poses that di�erent stakeholder groups see creative systems di�erently and their
perception of software behaviour could and should be managed in a bespoke
manner. We can therefore imagine an experiment where we present the pro-
cesses and products from creative software to di�erent stakeholder groups and
assess their reaction to see if there is indeed a di�erence in how di�erent groups
react, learning from analyses of the results. Hypothesis 2 encompasses much of
our philosophical position on the notion of creativity being essentially contested
and secondary in nature. One can imagine restricting participants in an experi-
ment to fairly constrained groups, and testing whether there is general (healthy)
disagreement about the nature of creativity in people and software or not, and
further testing whether there is more consensus about software being uncre-
ative. To properly test hypothesis 2, we would need to ask participants about
the essential behaviours – such as intentionality, learning and reflection – they
perceive to be taking place in software and see how it a�ects their perception of
uncreativity in the system.

Our third hypothesis makes a bold statement: that blind comparison tests
damage the long-term goal of embedding creative software in society, by em-
phasising the evident humanity gap. If this e�ect is true, it would be borne out
by a Turing-style test where, when people are told that it was software that
produced an artefact that they particularly liked, they were also asked about
whether their perception of the creative act and/or the artefact had changed
in light of the new knowledge. More pointed questions about the nature of any
change in perception could lead to insights about how to manage the humanity
gap in future projects. This would lead into an experiment to address hypothesis
4, where computer generated artefacts were presented as re-imagined pieces with
specific management of the relative lack of humanity in the generation of the
artefacts. The re-imagining would specifically include commentaries and other
framing information produced by the creative system. If hypothesis 4 is correct,
people would appreciate the re-imagined versions of artefacts more than those
presented merely as computer-generated versions from the human oeuvre.

By proposing that random number generation detracts from an experience of
a creative act, whereas more accountable unpredictability can benefit the expe-
rience, hypothesis 5 is more specific than those preceding it. We can imagine an
experiment where one set of participants are told that a particularly impressive
creative act (in terms of the processing performed and/or the resulting artefacts)
was because of a random event, and another set are given interesting framing
information about what led – in a non-random way – to the same unpredictably
good creative act. If the latter group appreciated the creative act and its results
more than the former group, the truth of the hypothesis would be upheld.

We have already started work on testing hypothesis 6, i.e., that the formalism
presented in [20], can capture notions of progress when building creative systems.
That is, we have used the formalism to capture abstracted timelines leading to

the building of certain creative systems, and timelines where that software op-
erates and produces artefacts of value. However, to convince the Computational
Creativity researcher stakeholders of the value of the formalism, we need to work
with them to capture the essence of their approaches to implementing and op-
erating creative software. Moreover, our audience evaluation model is far from
complete. We plan to employ the criteria specified in [52], for more fine-grained
evaluations of the quality, novelty and typicality of artefacts. We will also import
audience reflection evaluation schemes from the IDEA descriptive model, e.g.,
change in well-being, cognitive e�ort and emotional responses such as surprise
and amusement.

The final two hypotheses we present above relate to communities of creative
people into which creative software is implanted. To address hypothesis 7, we
will need to implement software behaviours which can meaningfully be described
as subjective, and we plan to do so with the ANGELINA videogame generation
system, and others such as The Painting Fool automated artist. With such sys-
tems, we can experiment to see whether members of the creative community
are more impressed by subjective software or not. Such an experiment could be
simultaneously used to address the final hypothesis, with knowledge of the com-
putational origins of artefacts systematically withheld in order to see whether
positive or negative biases hold in di�erent creative communities. Similarly, ex-
periments where participants are told about the intellectual growth of a system
could be carried out, to see if this influences their impression of the software.
An analysis of the findings from such experiments could help pave the way for
software to be full members of these kinds of communities.

Looking at the three stakeholder groups studied here, we see some emerging
generalities. In particular, looking at behaviours where systems exhibit sub-
jectivity and intentionality, it seems clear that in all three groups, personality
modelling in software has the potential to increase the impression that people
have of what software does and, in turn, what it produces. This is part of a new
understanding of creative acts as being potentially interesting, even dramatic,
episodes of activity which can amuse and engage people, rather than a means to
the end of producing an artefact of value. This is in contrast with the traditional
idea that the value of the output from software can increase people’s apprecia-
tion of the creativity it exhibits. While the traditional view is often correct, it is
not the only model of managing perceptions of creativity in software.

The hypotheses presented here are only a subset of those which should be
proposed and addressed in the future of Computational Creativity research. Not
addressing such issues would be a mistake, as stakeholder perception of creativity
in software will in part dictate the number of researchers and businesses com-
ing into the field. Done badly, handling of stakeholder perceptions could stall
the forward progress achieved towards embedding creative software in society.
As a recent controversial example, online retailer Amazon briefly sold T-shirts
with slogans such as “Keep Calm and Rape a Lot” [42]. The T-shirt company
responsible posted an apology on its website, and insisted that the o�ending
articles were “automatically generated using a scripted computer process run-

ning against hundreds of thousands of dictionary words”. This may be the first
example of computer generated artefacts causing such o�ence and a company –
while taking responsibility – blaming generative software for poor quality arte-
facts, while tacitly acknowledging that the software had taken on unsupervised
creative responsibilities in their workplace.

Situations where software is employed independently for creative purposes in
commerce and elsewhere are likely to become more commonplace in the future.
As a more positive example, IBM researchers have recently undertaken research
to explore the commercial potential of Computational Creativity [31], with par-
ticular emphasis on culinary creativity [48,55]. Creative software will make great
inventions and make terrible mistakes in the future, and this will lead to a re-
evaluation of humanity as being the centre of the creativity universe. Managing
stakeholder perceptions of creativity in software will be paramount in making
this transition as smooth and as fruitful for society as possible.

Acknowledgements

Some of the work presented here was originally explored in [17] and [20], and
we are very grateful to the organisers of the AISB 2014 symposium on Comput-
ing and Philosophy, and the organisers of the 2014 International Conference on
Computational Creativity. We wish to thank the many researchers with whom
we have discussed the views presented in this chapter, especially our colleagues
in the Computational Creativity group at Goldsmiths College. This research has
been funded by EPSRC grants EP/L00206X and EP/J004049, and with the
financial support of the Future and Emerging Technologies (FET) programme
within the Seventh Framework Programme for Research of the European Com-
mission, under FET-Open Grant numbers: 611553 (COINVENT) and 611560
(WHIM).

References
1. National Science Foundation, CreativeIT, Program Solicitation 09-572

http://www.nsf.gov/pubs/2009/nsf09572/nsf09572.htm, 2009.
2. The Seventh Framework Programme (2007-2013) of the European Union: Informa-

tion and Communication Technologies. http://cordis.europa.eu/fp7/ict/docs/ict-
wp2013-10-7-2013-with-cover-issn.pdf, 2013.

3. M. A. Arbib and M. B. Hesse. The Construction of Reality. Cambridge University
Press, 1986.

4. J. Langshaw Austin. How to do things with words. Oxford University Press, 1975.
The William James Lectures delivered at Harvard University in 1955.

5. M. A. Boden. What is creativity? In M. A. Boden, editor, Dimensions of Creativity,
pages 75 – 117. MIT Press, 1996.

6. M. A. Boden. The Creative Mind: Myths and Mechanisms. Weidenfield and Nichol-
son, 1990.

7. O. Bown. Empirically grounding the evaluation of creative systems: Incorporat-
ing interaction design. In Proceedings of the Fifth International Conference on
Computational Creativity, 2014.

8. A. Cardoso, T. Veale and G. A. Wiggins. Converging on the divergent: The history
(and future) of the International Joint Workshops in Computational Creativity. AI
Magazine, 30(3), 2009.

9. J. Charnley, A. Pease, and S. Colton. On the notion of framing in Computational
Creativity. In Proceedings of the Third International Conference on Computational
Creativity, 2012.

10. S. Colton and D. Ventura. You can’t know my mind: A festival of Computational
Creativity. In Proceedings of the Fifth International Conference on Computational
Creativity, 2014.

11. S. Colton. Experiments in meta-theory formation. In Proceedings of the AISB’01
Symposium on Artificial Intelligence and Creativity in Arts and Science, 2001.

12. S. Colton. Automated theory formation in pure mathematics. Springer. 2002.
13. S Colton. Automatic invention of fitness functions with application to scene gen-

eration. In Proceedings of the EvoMusArt Workshop, 2008.
14. S. Colton. Creativity versus the perception of creativity in computational systems.

In Proceedings of the AAAI Spring Symposium on Creative Intelligent Systems,
2008.

15. S Colton. Evolving a library of artistic scene descriptors. In Proceedings of the
EvoMusArt Conference, 2012.

16. S. Colton. The Painting Fool: Stories from building an automated painter. In
J. McCormack and M. d’Inverno, editors, Computers and creativity, pages 3–38.
Springer, 2012.

17. S. Colton, M. Cook, R. Hepworth, and A. Pease. On acid drops and teardrops:
Observer issues in computational creativity. In Proceedings of the 7th AISB Sym-
posium on Computing and Philosophy, 2014.

18. S. Colton, J. Goodwin, and T. Veale. Full FACE poetry generation. In Proceedings
of the Third International Conference on Computational Creativity, 2012.

19. S. Colton, A. Pease, and J. Charnley. Computational Creativity Theory: The
FACE and IDEA descriptive models. In Proceedings of the Second International
Conference on Computational Creativity, 2011.

20. S. Colton, A. Pease, J. Corneli, M. Cook, and T. Llano. Assessing progress in
building autonomously creative systems. In Proceedings of the Fifth International
Conference on Computational Creativity, 2014.

21. S. Colton and G. A. Wiggins. Computational Creativity: The final frontier? In
Proceedings of the European Conference on AI, 2012.

22. M. Cook, S. Colton, and J. Gow. Automating game design in three dimensions.
In Proceedings of the AISB Symposium on AI and Games, 2014.

23. D. Dennett. Three kinds of intentional psychology. In Perspectives in the Philos-
ophy of Language: A Concise Anthology, pages 163–186. Broadview Press, 2000.

24. A. Eigenfeldt, A. Burnett, and P. Pasquier. Evaluating musical metacreation in a
live performance context. In Proceedings of the Third International Conference on
Computational Creativity, 2012.

25. A. Ellegard. Darwin and the General Reader: The Reception of Darwin’s Theory of
Evolution in the British Periodical Press, 1859-1872. University Of Chicago Press,
1990.

26. K. Evans. The Stuckists: The First Modernist Art Group. Victoria Press, 2000.
27. J. Fahnestock. Rhetorical Figures in Science. Oxford University Press, 1999.
28. M. Franzen, P. Weingart, and S. Rödder. Exploring the impact of science com-

munication on scientific knowledge production: An introduction. In S. Rödder,
M. Franzen, and P. Weingart, editors, The Sciences’ Media Connection – Public
Communication and its Repercussions, pages 3–16. Springer, 2012.

29. W. Gallie. Essentially Contested Concepts. Proceedings of the Aristotelian Society,
56:167–198, 1956.

30. J. N. Gray. On the contestability of social and political concepts. Political Theory,
5(3), 1977.

31. A. Jagmohan, Y. Li, N. Shao, A. Sheopuri, D. Wang, L. Varshney, and P. Huang.
Exploring application domains for computational creativity. In Proceedings of the
Fifth International Conference on Computational Creativity, 2014.

32. C. Johnson. Is it time for computational creativity to grow up and be irresponsible?
In Proceedings of the Fifth International Conference on Computational Creativity,
2014.

33. J. Jones. Santa bought me a Playstation. But it’s still not art. The Guardian. 7th
January 2014.

34. A. K. Jordanous. Evaluating Computational Creativity: A Standardised Procedure
for Evaluating Creative Systems and its Application. PhD thesis, Department of
Informatics, University of Sussex, 2012.

35. G. Lako�. Why it matters how we frame the environment. Environmental Com-
munication, 4(1):70–81, 2010.

36. L. Lambourne. The Aesthetic Movement. Phaidon, 1996.
37. B. Latour. Science in Action: How to Follow Scientists and Engineers Through

Society, Open University Press, 1987.
38. G. Lemaine, R. Macleod, M. Mulkay, and P. Weingar. Problems in the emergence of

new disciplines. In G. Lemaine, R. Macleod, M. Mulkay, and P. Weingar, editors,
Perspectives on the Emergence of Scientific Disciplines, pages 1–26. Maison des
Sciences de l’Homme, 1976.

39. Y. Li, C. Hu, L. Minku, and H. Zuo. Learning aesthetic judgements in evolutionary
art systems. Genetic Programming and Evolvable Machines, 14(3):315–337, 2013.

40. J. Locke. An essay concerning human understanding. Oxford University Press
1975.

41. P. Machado and A. Cardoso. All the truth about NEvAr. Applied Intelligence,
16(2):101–118, 2002.

42. T. McVeigh. Amazon acts to halt sales of ‘Keep Calm and Rape’ T-shirts. The
Guardian. 2nd March, 2013.

43. D. Mo�at and M. Kelly. An investigation into people’s bias against computational
creativity in music composition. In Proceedings of the Third Joint Workshop on
Computational Creativity, 2006.

44. D. Norton, D. Heath, and D. Ventura. Finding creativity in an artificial artist.
The Journal of Creative Behavior, 47(2):106–124, 2013.

45. A. Pease and S. Colton. Computational Creativity Theory: Inspirations behind the
FACE and the IDEA models. In Proceedings of the Second International Conference
on Computational Creativity, 2011.

46. A. Pease and S. Colton. On impact and evaluation in Computational Creativity:
A discussion of the Turing Test and an alternative proposal. In Proceedings of the
AISB symposium on Computing and Philosophy, 2011.

47. A. Pease, S. Colton, R. Ramezani, J. Charnley and K. Reed. A discussion on
serendipity in creative systems. In Proceedings of the Fourth International Con-
ference on Computational Creativity, 2012.

48. F. Pinel, L. Varshney, and D. Bhattacharjya. A Culinary Computational Creativity
System. In This edition, 2014.

49. J. A. Plucker and M. C. Makel. Assessment of creativity. The Cambridge handbook
of creativity, pages 48–73, 2010.

50. J. R. Ravetz. Usable knowledge, usable ignorance: Incomplete science with policy
implications. Knowledge: Creation, Di�usion, Utilization, 9(1):86–116, 1987.

51. J. R. Ravetz. Scientific Knowledge and its Social Problems. Transaction Publishers,
1996.

52. G. Ritchie. Some empirical criteria for attributing creativity to a computer pro-
gram. Minds and Machines, 17(1):67–99, 2007.

53. J. Romero and P. Machado. The art of artificial evolution: A handbook on evolu-
tionary art and music. Springer, 2008.

54. J. Searle. A taxonomy of illocutionary acts. In Keith Günderson, editor, Language,
mind, and knowledge, volume 7. University of Minnesota Press, 1975.

55. N. Shao, P. Murali, and A. Sheopuri. New developments in culinary Computational
Creativity. In Proceedings of the Fifth International Conference on Computational
Creativity, 2014.

56. K. Smith. Mutually contested concepts and their standard general use. Journal of
Classical Sociology, 2(3):329–343, 2002.

57. S. H. Stocking and L. W. Holstein. Manufacturing doubt: Journalists’ roles and
the construction of ignorance in a scientific controversy. Public Understanding of
Science, 18:23–42, 2009.

58. K. Stuart. Video games and art: Why does the media get it so wrong? The
Guardian. 8th January 2014.

59. A. M. Turing. Computing machinery and intelligence. Mind, vol. 59, pages 433–
460, 1950.

60. W. K. Wimsatt. The verbal icon: Studies in the meaning of poetry. Number 123.
University Press of Kentucky, 1954.

	Stakeholder Groups in Computational Creativity Research and Practice
	Introduction
	A Perspective on Creativity
	Communities of Creativity Stakeholders
	The Computational Creativity Stakeholders
	Other Creativity Stakeholders
	Relationships Between the Different Stakeholder Groups

	Observer Issues with the General Public
	Essential Behaviours
	The Humanity Gap
	Software Accounting for its Actions
	A Case study in Automated Portraiture

	Formally Capturing Progress in Creative Systems
	Formal Assessment of Progress
	Diagrammatic Capture of Timelines
	Comparing Diagrams and Output
	A Case study in Evolutionary Art

	Software as part of a Creative Community
	Accountable Subjectivity
	A Case Study in Automatically Designed Videogames

	Conclusions and Future Work

