
The FloWr Online Platform: Automated Programming
and Computational Creativity as a Service

John Charnley, Simon Colton, Maria Teresa Llano and Joseph Corneli
Computational Creativity Group, Department of Computing,

Goldsmiths, University of London, UK
ccg.doc.gold.ac.uk

Abstract

We present recent developments in the Flowchart Writer
(FloWr) project, where we have built a framework for imple-
menting creative systems as flowcharts of processing nodes.
We describe how the system has been migrated from a desk-
top application to a web portal and document the various fea-
tures that the portal provides to support Computational Cre-
ativity research and development. This includes a node devel-
opment package and automated chart development assistants.
We detail how we have supplemented the online graphical
platform with a web service API to enable developers to re-
motely access the features of FloWr through a programming
language of their choice. This encompasses developing sys-
tems as flowcharts, together with running flowcharts remotely
and also allows developers to publish flowcharts as web ser-
vices. Importantly, the API allows Computational Creativity
researchers to experiment with the automated development of
creative software systems. To encourage this, we have also in-
troduced simple models for automated software development
into the FloWr API itself, providing a novel system for un-
sophisticated users to experiment with. We demonstrate the
potential benefits of using FloWr, with case studies showing
how the web portal has been used for both node and chart
development by novice and expert users.

Introduction
In the FlowChart Writer (FloWr) project1, we have built
a platform for all Computational Creativity researchers
to produce novel creative systems via GUI-based writing
of flowcharts which pass information through processing
nodes. The ultimate aim of the project is to form a com-
munity of users contributing to a corpus of nodes and
flowcharts, which will enable the automatic generation of
flowcharts, hence modelling creativity at the process level.

Since its introduction as a desktop application in (Charn-
ley, Colton, and Llano 2014), there have been many devel-
opments with FloWr. One of the most significant changes
has been the migration to an online version. FloWr users
no longer have to download a huge Java desktop applica-
tion, no updates are required and a variety of devices can be
used to access the system. Nor are users restricted by the
computing power of their device as processing is performed

1http://ccg.doc.gold.ac.uk/research/flowr/

on our servers. Our main motivation for this migration, how-
ever, is a desire to provide a platform for interaction between
researchers in the Computational Creativity community, by
letting them share ideas, processes and resources, and col-
laborate on creative system development.

The main flowchart writing platform allows high-level
creative systems to be developed. Users can also create new
flowchart nodes to add novel functionality to the portal, in-
creasing the power and scope of the systems that can be
created. Our platform also provides Computational Creativ-
ity system design as a service through the FloWr API. This
means that researchers are not restricted to the visual GUI
and can access the full power of FloWr how they like, from
whichever programming environment they choose. We are
particularly interested in the possibilities for automated pro-
gramming that this affords. Another new feature lets users
expose flowcharts as standalone web services to allow other
systems or users to access them. In the next section, we give
details of the portal and highlight improved features of the
online system over the previous desktop version. We follow
this with two case studies highlighting the potential value of
FloWr for novices and experts alike. We conclude with a
discussion of future developments for the FloWr platform.

This work has similarities with the ConCreTeFlows
project (Žnidarsic et al. 2016), where concept creation
workflows have been implemented in a flowchart paradigm.
That project uses Clowdflows2 which, like FloWr, provides
a portal for developing and sharing flowchart-based systems.
Clowdflows was chiefly developed for algorithmic program-
ming in machine learning and data-mining, with appropriate
nodes. By contrast, FloWr has been developed for Com-
putational Creativity collaboration and research and we are
unaware of any other projects with these specific aims.

The FloWr Web Portal
In addition to improved facilities for writing flowcharts,
users have access to a great deal of additional meta-level
information describing what nodes and charts do. There is
also an Admin area which gives access to numerous other en-
hancements, such as the API and Node Development Pack-
age. We describe the various aspects of the portal below.

2http://clowdflows.org/

ccg.doc.gold.ac.uk
http://ccg.doc.gold.ac.uk/research/flowr/
http://clowdflows.org/


Figure 1: The online FloWr flowchart building interface.

Writing Flowcharts
The main interface, shown in Figure 1, is where users manu-
ally craft flowcharts. It is an improved version of the FloWr
desktop application (Charnley, Colton, and Llano 2014).
Flowcharts consist of nodes, representing self-contained
processing elements, and arrows, which indicate how data is
passed between nodes during processing. The core features
of the desktop version have been retained including adding,
removing, moving and re-sizing nodes, defining variables
to highlight output, setting parameters, running charts and
viewing output. Nodes are still written as stand-alone Java-
wrapped code modules and the system still makes use of an
underlying script syntax to describe the functional aspects
of a chart that are independent from the graphical represen-
tation. General usability, feel and use-of-space has been im-
proved by using modern front-end web development frame-
works, as has cross-device/platform support. There are also
improvements to GUI interaction, such as single-axis re-
sizing and improved chart runtime feedback.

Node Information We have enhanced the information
panel that appears on double-clicking a node, with addi-
tional information and the ability to open multiple instances.
The information panel for a node shows the unique node id,
its type, a bespoke label and a description of what the node
does in the specific context of this chart, as well as tools
to alter the node colours. The input panel shows, for each
parameter, its name (with type tooltip), links to information
about that parameter (see below) and a type-specific input
control for setting the parameter. Static-value parameter set-
ting has been enhanced to make it simpler and more fault-
tolerant. Type-appropriate controls are displayed, such as
checkboxes for Boolean values. Automated pre-validation
ensures that, for example, numerical parameters are only
passed numbers. Node developers can specify additional
validation checks, such as maximum values, and bespoke
data-types can be used to enforce regex-based validation.
Developers can also choose which type of control, should be
used for each input parameter, such as a textarea or textbox.

The output panel shows a tabbed list of all the defined out-
put variables for the node (elements of its output that have
been given specific labels). Output and variable definitions
operate in the same manner as for the desktop version, using

Figure 2: The add-node wizard.

the same syntax. If the user has sufficient access rights – i.e.
they own that chart – they can add, delete and amend vari-
ables, and we have made error notification clearer and more
robust. Once run, any node output can be downloaded in
JSON-encoded format. This is particularly useful for testing
new nodes in the node development environment, as we de-
scribe below. The user can also inspect the output from the
Java console, which is useful for debugging node errors and
for applications where flowcharts are to be used from shell
commands. As in the desktop version, the output of nodes
can be locked so that outputs are cached which is useful for
chart development and debugging.

Smart Assistance We have introduced wizards to help
users create charts, as shown in Figure 2. For example, when
the first node is added to a blank chart, the user will, initially,
be shown only those nodes that have been tagged by the node
developer as suitable for starting charts. Similarly, when a
user wishes to create a link between two nodes, by holding
down the control key to drag a new arrow between them, a
wizard will suggest a subset of nodes which can, in some
way, make use of the source node output. Similarly, when
a user draws an arrow in to a node from empty space, or
vice-versa, the new node wizard will consider which nodes
might be appropriate to take/provide data from/to the tar-
get. These wizards use Java reflection to find potential data-
type matches. Restricting nodes on this basis is very useful,
given how many nodes are available, especially when deal-
ing with certain artefact types, e.g., dragging an arrow out
of an image retrieval node brings up a wizard showing only
image-manipulation nodes. The wizards also provide a com-
prehensive node text search facilities to find particular nodes
or domain-specific packages.

A new MapHelper wizard, shown in Figure 3, helps to
create and manage data links between nodes, i.e., how data
is passed between them at runtime. This appears whenever a
new node has been chosen via the new-node wizards, above,
or when an existing arrow is selected. This wizard shows the
source, or output, node on the left and the target, or input,
node on the right. Existing data maps are shown at the top
of the dialog. To create new data maps, the user selects a
parameter from the right-hand panel, whereupon FloWr uses
Java reflection to review all the output of the source node to
find any output or variables that match the data-type of that
parameter. If the user clicks on one of these suggestions,
the wizard establishes the data map, creating a new output
variable where necessary.



Figure 3: The map helper wizard.

Data Types The desktop version could already handle a
large number of different data types and we have contin-
ued to expand this. For example, we have recently added
images, which are represented internally as Java Buffered-
Images. These can be large, depending upon the resolution,
so thumbnails are used in output panels which give users the
option to download the image at any resolution they choose,
up to the full version. We have also introduced the notion
of bespoke FloWr data-types. These are designed to enforce
data-consistency by providing methods to support seamless
front-end validation. For example, we have introduced a
new Float01 data-type which can only be instantiated with
a string value that represents a valid float value between 0
and 1. The node provides a regular expression for validat-
ing front-end input strings accordingly. Node developers can
use this to define bespoke data types and take assurance that
values input to their node will be valid and consistent.

Menu The menu bar contains a number of new features.
For instance, chart loading now includes lists per user and
for recent charts. New history functionality takes regular
snapshots of the chart and allows users to return their chart
to a previous state. This also includes a facility whereby
the user can take a named snapshot to better control version-
ing. There are other menu items for clearing the chart out-
put, restarting the user-specific server (useful in debugging),
highlighting run nodes and removing locks. The user can
view the script underlying the chart and export the whole
chart as an XML file. They can also view the supplemen-
tary information about the chart provided by the chart owner,
as described below. Some of the charts that FloWr users
have developed are quite large and contain many nodes.
So, we have improved the way in which FloWr handles
node positioning and introduced user-specific view profiles,
which persist between sessions. The menu provides com-
mands to re-centre the chart and help to find nodes that
have been moved off-screen. Auto-layout using Graphviz
(www.graphviz.org) has also been implemented.

Help and Information
Every FloWr node or chart has a specific owner attribute,
which is used to control access and editing rights. Only the
owner of a chart can edit it and they can, optionally, lock it
to prevent accidental changes. Charts can be private, visi-
ble to the owner alone, or public, where all other users can

view and run, but not amend, that chart. To amend another
person’s chart, a user must take a copy and use that. Simi-
larly, only node owners may download and make changes to
a node’s code and information (using the node development
package described below). So, only node owners can down-
load and upload new code or rollback versions. Chart Own-
ers can provide an overview of the chart, bespoke node la-
bels and context-specific descriptions for nodes using in-situ
editors. Node Owners can provide additional information
about nodes, which is available from various buttons next to
node types and parameters. This includes an overview of the
node, its default colours and whether it can be used to start
charts, i.e. generates data from scratch (to inform the first-
node wizard). It provides information about the parameters
and allows specific input control, default value and valida-
tion options to be set. In particular, the node owner can spec-
ify drop-down options for a parameter, together with user-
friendly replacement labels, if desired. This has replaced
clunky source code constructs, which had a number of is-
sues. Information can also be provided about the bespoke
output objects, or sub-objects, that the node owner has cre-
ated for their node.

Implementation
The portal uses a mixture of front-end web technologies,
PHP, a relational SQL database and Java. To avoid cross-
user data contamination, often caused by Java static vari-
ables, each user is given their own java server instance
which handles their current chart. This also provides a load-
balancing system. User-state is maintained server-side be-
tween sessions. Currently users must have a Google account
to log in and their account must be unlocked using a code
provided by the FloWr team. To maintain state consistency,
users can only log in from one browser session at a time. We
have taken steps to improve responsiveness by minimising
client-server communication, e.g. by bundling calls in spe-
cific client use-cases. For speed of execution, chart runs are
handled entirely by the back-end Java server with only mini-
mal updates passed to the browser. Output for display is sent
to the client piecemeal, with elements transferred only when
viewed by the user. The system uses a mixture of sockets
and file-system tools to transfer data around and minimise
lag.

Admin Area
The admin area handles aspects of the portal that aren’t con-
cerned directly with flowchart writing. There are tabs for
searching and managing charts, including moving them be-
tween the API and GUI or importing from XML. A tab for
managing nodes, including downloading/uploading code,
rolling back to previous versions and purging unwanted
nodes entirely. Note that any changes to nodes must, cur-
rently, be carefully managed by node developers to ensure
that existing charts aren’t broken. The admin area also in-
cludes an ever-changing tutorial section. The developer sec-
tion provides a link to download the developer package (see
below). Other tabs in the admin area include recent news
and developments. There is a place to provide feedback, a
bug tracker for superusers and instructions for using the API.



Figure 4: The NodeTester application.

Node Development
We have created a developer package to help users create
their own nodes. It includes the ProcessNode and Proces-
sOutput Java classes that underlie all nodes and their output
(as described in (Charnley, Colton, and Llano 2014)). The
package also provides a NodeTester application, shown in
Figure 4, which lets developers parameterise a node, run it
and inspect its output. NodeTester allows you to select a
node to focus on, from those that you have in the local pro-
cessnodes package. Below this is a DataDirectory selector.
In the desktop version, this contained large libraries of static
data, such as dictionaries or newspaper article archives. Pre-
viously users had to download these multi-gigabyte archives
to their local machine if they wanted to use all the nodes.
The online version keeps all this data on the server, so during
development, node owners use a local DataDirectory and,
when ready for release, an administrator installs the node’s
static data files on the server.

There is also a panel for setting parameters which uses
a JSON format. Whilst not as user-friendly as the online
GUI, it is as powerful and allows other data-types, such as
lists-of-lists to be defined. Once parameter values have been
set, they are stored locally as text. So, they can be edited
manually and saved between development sessions. Node-
Tester allows users to import downloaded output from charts
(see above) for use as values for parameters. Hence, devel-
opers can debug their nodes as though they were part of a
larger flowchart, without having to continually upload and
test their code changes.

Once a developer is happy with their node, they can up-
load it through the admin area of the portal. The meta-level
node information that owners can provide about their nodes,
as described above, is stored in XML format alongside the
source code. If the owner desires, they can upload changes
to this directly rather than using the online edit functions.

The FloWr Web API
One of the most exciting developments in the FloWr project
is the API. This allows users to access the power of FloWr
from within a programming language of their choosing. We
describe this as Computational Creativity as a Service. Via
the API, users can perform almost any of the actions that
would be available to the online developer. As with the un-
derlying script syntax, there is no need for notions of chart
layout, colours, labels etc., and the API is predominantly
functional rather than visual. So, for example, it is possi-
ble to set values for parameters but not, say, to re-position a

node in some notion of a screen. Charts created under the
API are kept separate from those created through the online
GUI (this is changeable in the Admin Charts area). This is
chiefly to remove the potential for portal to be swamped by
a large number of automatically-created API charts.

The API is accessed by POST requests, which must spec-
ify the user’s temporary 24-hour access token. As well as
creating and editing charts, the API allows the caller to run
them, as they would in the online GUI, and download the
output they produce. Some of the commands available in-
clude all those for manipulating charts, parameters, vari-
ables, data maps etc. They also provide lists of available
nodes, parameter information, output information and cur-
rent chart state including run progress. Chart states are pro-
vided in JSON format, listing all the nodes and their param-
eters in a machine-readable format, similar to both the XML
export and the underlying script syntax.

We are particularly interested in encouraging the API to
be used for automated programming via automatic flowchart
construction. To this end, the experiments in automatic
flowchart writing presented in (Charnley, Colton, and Llano
2014) have now been run entirely separately to the core
FloWr system, via the API. To foster such research, many
of the API commands provide meta-data about the available
nodes, their parameter types, output etc., which allows auto-
matic programming approaches to make informed decisions
about chart manipulation. In addition, the API has functions
for users to upload and syntax-check flowchart scripts and
XML charts, which provides another approach to automated
programming that researchers could use.

Automation Features
In addition to providing API functionality to encourage au-
tomated programming, we have begun to add some auto-
mated programming features into the main FloWr GUI por-
tal. In particular, users can call up the automated program-
ming dialog box where they can re-run the simple flowchart
construction experiments presented in (Charnley, Colton,
and Llano 2014), where we asked FloWr to generate charts
for creating poetic couplets from scratch. In the dialog box,
the user can select the nodes to be placed into particular
places in a template flowchart, sets of values to consider
for particular parameters and they can specify a minimum
level of output from the chart. They can then ask the system
to generate a working flowchart. We are hoping that this
demonstration of how FloWr might be used for automated
programming could encourage researchers to perform their
own experiments via the API, and we plan to greatly expand
the online automation aspects.

Case Study 1: A novice user adds a new node
This case study describes the experience of a relatively new
user to FloWr (author 4) who is familiar with the general
features of the web API, and who wants to contribute to
node development. His objective is to wrap one of the
commands from the Microsoft Web Language Model API
(www.projectoxford.ai/weblm) in a FloWr node, and use it
in a sample flowchart. The command to be encapsulated is



Figure 5: “Progress makes me want chocolate cookie”:
Simple interaction with a flowchart containing the new
MSWLMConditionalProbability node

Conditional Probability that rates how likely it is that a par-
ticular word/phrase will follow a given sequence of words.

The user easily finds the FloWrDev.zip file in-
side the development area of FloWr. This contains the
NodeTester toolkit, including FloWrDev.jar, a file of
INSTRUCTIONS, and an outline of a sample node. The
sample node does not have a lot of detail, so the user nav-
igates to the Nodes tab and types “api” into the search box
to track down code he had written earlier. There is a suit-
able existing node available as a template for modification,
namely the node that wraps FloWr’s own API. He down-
loads FloWrAPI.zip, which contains detailed and rele-
vant sample code.

The sample files are renamed, placed in an appropriate lo-
cal directory, then easily compiled and run under Java within
the FloWrDev.jar environment. Java then displays a minimal
panel for setting parameters and running the toolkit (Figure
4). After some further investigation, the user decides that he
needs to track down another worked example that formats its
output in a way that is more suited to the problem at hand.
He returns to the web API and locates a node that is known
to have output with suitable format, but this was created by
another user so the Get code option is greyed out and un-
available. This time, he had another way to track down the
code, but he submits a feature request asking for more pub-
lic example nodes. The web UI has a Feedback where this
sort of request can be made.

Adapting the FloWr API node to work with the Microsoft
API, rather than the FloWr API itself, is straightforward.
With the additional example in hand, formatting the node’s
output correctly is also easy. Following the strategy used in
the example, a third file is added to support a supplementary
class that organises output variables. During the adapting of
the node, the toolkit gives access to standard Java debugging
information and FloWr-specific runtime error messages.

The next step is to upload the code. On the Nodes tab
in the web interface there is a button for this. Files are se-
lected one by one using a file chooser. After some process-
ing, the new node becomes available via the dropdown node
chooser. Clicking on the Description button opens up an in-
terface whereby documentation for the node and each of its
input parameters and output variables can be added. Along
with a plain-text description, this interface also displays the
Java type information (which cannot be altered at this stage),
and an interface that provides the ability to add or modify de-
fault settings and multiple drop-down options for the node.
In this case, the user just fills in the plain text descriptions.

The node is now available for further experimentation.
Although the NodeTester allows the user to try out vari-
ous parameter settings for a single node, this is the first
experiment with the node in context. Hints are provided
(e.g., FloWr knows that a chart should typically begin with
a node that retrieves text for further processing). It takes the
user about half an hour to explore the available nodes and
choose some that make a convincing demo (Figure 5). This
flowchart uses a ConceptNet (Liu and Singh 2004) node
to come up with food combinations using the template: [x
HasProperty edible] + [x Any eat]. It concatenates these,
and then uses the new node to decide which word combina-
tions are likely to follow the word “eat”. It then uses another
ConceptNet node to select a putative cause: [x IsA change].
Finally, it combines the answers using a template combiner
node: b1Texts[*] makes me want b2Texts[*].
Note that b1Texts and b2Texts here refer to the in-
puts to the template combiner. Along with “progress makes
me want chocolate cookie” (Figure 5), other output with
highly probable food items, as rated by by the new node,
included “grow makes me want cheese plate” and “become
makes me want steak egg”. Output ranked with low prob-
ability included “become makes me want chocolate chi-
nese restaurant” and “progress makes me want dandelion
goat”. In the process of writing this flowchart, the user
learns more about how the node-connection Wizard works:
ctrl + mouse1 establishes connections between the nodes,
and then the Wizard points out which available variables
from a given upsteam node can be connected to a selected
input parameter in the downstream node.

Along the way to this result, a few further ideas came
to mind. Firstly, the node could be improved by allowing
more input parameters, in order to make more expressive
use of Microsoft’s API . Secondly, additional text processing
nodes could be created that quickly concatenate ArrayLists
together to form n-grams for testing using the API (rather
than using TemplateCombiner nodes). These ideas are
easily addressed following the patterns described above. In
total, the writing of the new node, deploying it within the
online FloWr portal, then building, debugging and running
a flowchart containing the new node took around 2 hours,
which we believe is a reasonable time for a novice user to
write a simple generative system. The new node contains
208 lines of code in total, of which approximately 40 are
new. The experience was quite satisfactory to the user, who
felt it was a good way for him as a novice Java programmer
to get practice in the language.



Case study 2: An expert user’s flowcharts
Here we present an account of the use of FloWr to develop
a complex flowchart from the perspective of an expert user
(author 3) who is not a developer of the core FloWr system
(author 1). We also summarise this user’s broader experi-
ence with the system. The flowchart we focus on is shown in
Figure 1. This flowchart generates fictional ideas to be used,
in this instance, in the context of generating original con-
cepts for musical theatre pieces. Research using FloWr for
fictional ideation has been carried out for around 2.5 years
as described in (Llano et al. 2016). During this time, the
expert user has added 41 new nodes to FloWr, which range
over utility nodes, natural language processing, and domain
specific nodes for fictional ideation and theory formation
(Colton, Ramezani, and Llano 2014). An overview of nodes
this user added to the system, and an example in each cat-
egory, is presented in Table 1. A total of 17 flowcharts
have been built to support fictional ideation, 9 of which have
been released into production to be used in the European
WHIM project (www.whim-project.eu) and 8 of them being
more experimental. These flowcharts use an average of 35
nodes each, with the most complex flowchart composed of
73 nodes and the most simple one composed of 6 nodes.

Type New Example
Utility 11 RunShellScript: runs shell scripts
Natural Language Processing:
Categorisers 2 POSCategoriser: annotates text with part-

of-speech information
Combiners 5 ListAppender: appends two lists
Extractors 1 NamesExtractor: extracts proper names

from text
Language 1 GrammarChecker: e.g. converts nouns

from singular to plural
Manipulators 2 StringManipulation: changes text case
Matchers 2 TuplesMatcher: matches tuples in speci-

fied positions
Retrievers 9 WordNet: retrieves WordNet data
Theory formation 3 HR3: text to HR3 format (Colton,

Ramezani, and Llano 2014).
Ideation 5 AudienceModel: ranks fictional ideas

Table 1: New nodes added by the expert user.

The starting point for our examination of the flowchart in
Figure 1 is a set of templates that describe pre-defined, gen-
eral scenarios that are to be completed by specifying either
locations, attributes, or characters, etc., that form the foun-
dation for the fictional ideas. These templates also form the
building blocks of the flowchart and their structure guides
the development effort. An instance of such a template is:

What if a PERSON TYPE had to learn how to ACTIV-
ITY in order to find true love?

The building blocks here are place-holders for the per-
son type and the activity. A ConceptNet node is used as
the source of knowledge to retrieve a list of suitable con-
cepts to fill the person type place-holder. This is shown in
Figure 6(a) block 1. As can be seen in this figure, various
ConceptNet nodes are invoked, which retrieve ConceptNet
facts of the form: [x, IsA, human], [x, IsA, occupation], [x,

IsA, person] and [x, IsA, profession], where x is the per-
son type. Outliers are removed using WordListCategoriser
nodes, and the results are appended to a common list through
the ListAppender nodes. Building block 2 of Figure 6(a)
retrieves facts of the form [x, Any, y], where y is then fil-
tered to restrict only to verbs, through a WordSenseCate-
goriser node; the results can then be used in the activity
place-holder. Finally, building block 3 combines these tu-
ples into larger tuples of the form: [x1, IsA, , x2, , y],
where x1 6= x2. The template is finally filled in through the
TemplateCombiner node, producing ideas such as:

What if a banker had to learn how to fix a cat in order
to find true love?

After a first version of a flowchart is finished, the output
is analysed to decide if further work is required, which
is usually the case. In the particular example followed
here, two additional modifications were performed. These
are shown in Figure 6(b). The nodes in blocks 4 and
5 retrieve representative qualifiers of the x1 and x2 con-
cepts – for which there was not much data in Concept-
Net. To achieve this, the Disco node, a linguistic tool
(www.linguatools.de/disco/disco en.html) that extracts re-
lated words using co-occurrences, was used. In particular,
the 50 most common collocations for each concept were re-
trieved, and consequently filtered to keep only adjectives.
Finally, block 6 in Figure 6(c) handles the evaluation of the
ideas. This is achieved by connecting to an external web
service that analyses their narrative potential through a set
of measures; the results are subsequently fed into another
external web service that contains an audience model that
provides a ranking of the ideas. A possible expansion of the
idea above, that is ready for this evaluation is:

What if a wealthy banker had to learn how to fix a cat
in order to captivate an accomplished veterinarian?

Having access to different linguistic tools as nodes that
support the retrieval and analysis of information has pro-
vided a useful framework for experimentation. In particular,
being able to connect different tools (as illustrated above for
the Disco and ConceptNet nodes) enables easy formation of
a dynamic knowledge base to enrich generated output.

As can be seen from Figure 1, we have only explained a
small subset of nodes used in the flowchart (we have focused
on one of the possible templates). The flowchart deals with
a total of 4 templates, each of which produces a different set
of fictional ideas using common standard building blocks,
contextual information blocks and evaluation blocks. This
way of working provides a lot of flexibility. However, it also
has the drawback that flowcharts can become cluttered with
multiple nodes that could otherwise be encompassed in only
one. For instance, if the ConceptNet node had either (a) an
input parameter that takes a list of RHS or LHS queries in
the form of text – it currently accepts these query parameters
only in the form of an ArrayList of strings – or (b) if an alter-
native ConceptNet node existed with a text parameter, then
all of the nodes in block 1 of Figure 6(a) could be replaced
by a single node. Such functionality could be easily devel-
oped; however, following the line set out in alternative (a),



Block 1 Block 2 Block 3
(a) Building blocks

Block 4 Block 5
(b) Context information.

Block 6
(c) Evaluation

Figure 6: Expert user processes in the fictional ideation flowchart, split into blocks.

nodes can become too complex, with an unmanageable va-
riety of optional parameter combinations, and following the
route set out in alternative (b), FloWr would end up with sev-
eral ConceptNet nodes that only differ in the way the infor-
mation is retrieved, so it could become difficult to track all of
the variants. In any case, complex flowcharts are likely to be
difficult to read because of the sheer number of nodes. A fu-
ture improvement can be accomplished by having nodes that
represent entire flowcharts, so for instance, block 1 in Fig-
ure 6(a) could be represented as a single node, which could
be expanded at will to show the lower layers.

In summary, the experience with FloWr by the expert user
has been very satisfactory in the sense of reuse and ease
of experimentation. Challenges are present with all frame-
works, and from experience of using FloWr in the context
of fictional ideation, it is clear that the maintenance of large
flowcharts (as in Figure 1) can be difficult, since the con-
nections become confusing. Being able to use hierarchies
of flowcharts would be facilitative. The format of data ex-
change is another challenge. As illustrated above with the
ConceptNet node, the situation can be complex either for the
developer or the user. We plan to implement a mechanism to
handle the complexity of nodes in a flexible framework that
can be tailored to different users with different priorities.

Conclusions and Future Work
We have described progress in the FloWr project, the long
term aim of which is to study automating creativity at pro-
cess level through the automatic construction of flowcharts
for generative purposes. We have migrated FloWr to an on-
line portal, with all the benefits that this affords, with an
aim of creating a platform for interaction between Computa-
tional Creativity researchers. In addition, we have described

new powerful additional features of the platform, such as
the API, the node developer package and the ability to pub-
lish flowcharts as stand-alone web services. We are partic-
ularly interested in how the API will help and encourage
researchers to experiment with automated programming. To
illustrate the potential value of FloWr to Computational Cre-
ativity researchers, we presented two case studies. In the
first, a novice user created a new node and a flowchart which
used it in two hours, showing that the learning curve for the
platform is not too steep. In case study 2, the accomplish-
ments and experiences of an expert user showed that FloWr
has real potential for building sophisticated creative systems.

FloWr has reached an important milestone in its develop-
ment. The platform is now mature and performs all of the
main functions for which it was built. We still foresee de-
velopment work for the core system. However, at this point
we have decided that, rather than second-guess which new
features to introduce, we will focus our efforts on raising
awareness of the system and supporting its adoption by new
FloWr users by helping them to learn how to use various as-
pects of the system and contribute to the platform. We will
then respond to feedback and direct our efforts accordingly.

Future feature improvements include better looping and
conditional processing plus the introduction of new data-
handling approaches such as tagging and a global data store
during chart running. Although such enhancements should
not be of major concern to API users, who can decide to
run parts of the chart, and handle output, as they wish. Fur-
ther improvements could include parameter validation us-
ing owner-defined regex checking or cross-parameter checks
and better support for pausing and stopping chart runs.

Our automation experiments will continue. In particular,
we are hoping that, as the corpus of nodes and flowcharts



grows, we will have an opportunity to machine-learn regu-
larities in the structure of flowcharts, and apply that knowl-
edge to the generation of novel flowcharts.

In order to further support automated programming, it is
likely to be important to expand on the bespoke data-type
and supplementary meta-information, e.g. minimum val-
ues, that FloWr currently supports. Following the method-
ology of “Design by Contract” (Mitchell and McKim 2002),
node authors would be able to make explicit statements
of pre-conditions, post-conditions, and invariants. Sophis-
ticated automatic programming clients could then reason
about these specifications. There are a range of Java li-
braries that support this sort of annotation, e.g., the Java
Modelling Language (Leavens, Baker, and Ruby 1998). Us-
ing such an approach, we plan to see whether an automatic
programming tool could rediscover, for example, the pat-
terns used in Figure 6(a)–6(c), and the way they fit to-
gether. This would be informed by work on reasoning
about formal specifications. There is an established body
of work in this area, much of it carried out in connection
with theorem provers such as Coq (Bove and Capretta 2007;
Tollitte, Delahaye, and Dubois 2012). Reasoning about pro-
gram syntax and semantics is a recognised challenge “the
pragmatic questions in this domain are far from settled”
(Chlipala 2011, p. 340), and we hope to contribute to this
field with reasoned automation over the FloWr system.

We intend to build on our initial work in encapsulating
charts as nodes. We have developed a node which makes
calls to the chart-run feature of the API and, so, we have
been able to use entire flowcharts as single nodes in other
charts. The next stage will be to resolve the issue of in-
terface – i.e. how to re-describe specific parameters of
the encapsulated chart as named parameters of the encap-
sulating node – so that traditional nodes and encapsulating
nodes are indistinguishable. This is likely to require some
development work in the core FloWr system, as the abil-
ity to pass in a list of encapsulated parameters with poten-
tially differing data-types is not clear. Python and Clojure
clients implementing the current API functions are avail-
able, and will be maintained and extended as the API evolves
(https://github.com/holtzermann17/FloWrTester).

We want to enhance chart-sharing by introducing a system
which, like view profiles, allows viewers of public charts
to alter a subset of parameters, rather than having to take a
copy. The subset of changeable parameters will be deter-
mined by the chart owner so that they can be changed to
produce new chart output without breaking the chart. This
will have some overlap with our work to encapsulate charts
as nodes by introducing a notion of interface. In addition,
we would like to enable users to switch between a num-
ber of pre-set chart parameterisations. We also plan to fur-
ther extend the media types that FloWr can handle. The
placeholder-viewer approach used for images is very effec-
tive and we expect to be able to easily expand FloWr to other
multimedia domains, such as audio and 3D models.

The community features of FloWr will evolve. We will in-
troduce sub-groups of users, context-based messaging, and
comments and responses. We will supplement the basic pub-
lic/private visibility system with the ability to open charts up

to subgroups and introduce a similar system for node visi-
bility and versioning. So, for instance, novice node devel-
opers will be able to ask for feedback from a select group
before releasing their code to a wider audience. We hope
that FloWr becomes a hub for Computational Creativity re-
search, education and practice. Illustration with examples
is very powerful and the ability to quickly set up a chart
to demonstrate concepts with a natural language tool like
Porterstemming (Porter 1980), could be highly effective in a
range of scenarios. As per case study 1 above, we imagine
a researcher who hears about a new piece of research or tool
and is able to easily share it with the broader community by
implementing it as a node and demonstrating its operation in
a flowchart. Such illustrations have the power to be far more
informative than, for example, writing up a research note or
providing a link to a paper

Acknowledgments
This work has been supported by EPSRC Grant
EP/J004049/1 (Computational Creativity Theory), and
EC FP7 Grants 611560 (WHIM) & 611553 (COINVENT).

References
Bove, A., and Capretta, V. 2007. Computation by prophecy.
In Typed Lambda Calculi and Applications. Springer.
Charnley, J.; Colton, S.; and Llano, M. T. 2014. The flowr
framework: Automated flowchart construction, optimisation
and alteration for creative systems. In Proceedings of the
International Conference on Computational Creativity.
Chlipala, A. 2011. Certified programming with dependent
types. MIT Press.
Colton, S.; Ramezani, R.; and Llano, M. T. 2014. The HR3
discovery system: Design decisions and implementation de-
tails. In Proceedings of the AISB symposium on computa-
tional scientific discovery.
Leavens, G.; Baker, A. L.; and Ruby, C. 1998. JML: a
java modeling language. In Formal Underpinnings of Java
Workshop (at OOPSLA’98).
Liu, H., and Singh, P. 2004. Commonsense reasoning in and
over natural language. In Proc. 8th Int. Conf on Knowledge-
Based Intelligent Information and Engineering.
Llano, M. T.; Colton, S.; Hepworth, R.; and Gow, J. 2016.
Automated fictional ideation via knowledge base manipula-
tion. Cognitive Computation 1–22.
Mitchell, R., and McKim, J. 2002. Design by Contract, by
Example. Addison-Wesley.
Porter, M. 1980. An algorithm for suffix stripping. Program
14(3).
Tollitte, P.-N.; Delahaye, D.; and Dubois, C. 2012. Produc-
ing certified functional code from inductive specifications.
In Certified Programs and Proofs. Springer. 76–91.
Žnidarsic, M.; Cardoso, A.; Gervás, P.; Martins, P.; Hervás,
R.; Oliveira Alves, A.; Gonçalo Oliveira, H.; Xiao, P.;
Linkola, S.; Toivonen, H.; Kranjc, J.; and Lavrač, N. 2016.
Computational creativity infrastructure for online software
composition: A conceptual blending use case. In Interna-
tional Conference on Computational Creativity.


	Introduction
	The FloWr Web Portal
	Writing Flowcharts
	Help and Information
	Implementation
	Admin Area
	Node Development
	The FloWr Web API
	Automation Features

	Case Study 1: A novice user adds a new node
	Case study 2: An expert user's flowcharts
	Conclusions and Future Work
	Acknowledgments

