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Abstract

In this article, we present an idea for a more intuitive, low-cost, adjustable mechanism for behaviour control and management. One
focus of current development in virtual agents, robotics and digital games is on increasingly complex and realistic systems that
more accurately simulate intelligence found in Nature. This development introduces a multitude of control parameters creating
high computational costs. The resulting complexity limits the applicability of AI systems. One solution to this problem it to
focus on smaller, more manageable, and flexible systems which can be simultaneously created, instantiated, and controlled. Here
we introduce a biologically inspired systems-engineering approach for enriching behaviour arbitration with a low computational
overhead. We focus on an easy way to control the maintenance, inhibition and alternation of high-level behaviours (goals) in
cases where static priorities are undesirable. The models we consider here are biomimetic, based on neuro-cognitive research
findings from dopaminic cells responsible for controlling goal switching and maintenance in the mammalian brain. The most
promising model we find is applicable to selection problems with multiple conflicting goals. It utilizes a ramp function to control
the execution and inhibition of behaviours more accurately than previous mechanisms, allowing an additional layer of control on
existing behaviour prioritization systems.
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1. Introduction: Behavior Arbitration and Lightweight Cog-
nitive Architectures

The mechanism described in this article addresses the issue
of responsive and flexible action selection for behaviour-based
AI [1, 2] or similar modular approaches to cognitive systems,5

where the system contains a set of potentially conflicting rival
goals. We focus on intelligence for limited-performance sys-
tems, e.g. subsystems in a larger system which cannot simulta-
neously exploit the same resource. These systems face resource
constraints such that they are not able to or not intended to use a10

fully-fledged cognitive architecture such as SOAR [3] or ACT-
R [4]. Examples of resource restrictions include limited CPU
cycles, low power consumption or restricted memory size. For
both clarity on the type of problem we face and inspiration for
its solution we look to nature. Arbitrating conflicting goals is15

an essential skill in animal behaviour as it heavily influences
the fitness of an entity.

Take for example an antelope at a waterhole. The ante-
lope lives in a hostile environment and water is a valuable re-
source because it is both needed and sparse. Inside the wa-20

terhole there is a group of crocodiles waiting for an animal to
get close enough to be eaten. As the antelope needs to drink it
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has now two highly prominent and conflicting goals—survival
by avoiding the predator and survival by drinking from the wa-
terhole. If the antelope is not able to solve that situation by25

selecting one it would simply die in front of the waterhole.
Consider also the situation when the antelope is drinking

and a predator emerges close to it. It is already pursuing an im-
portant goal—drinking to sustain living—yet it needs to make
a decision as quickly as possible to escape the predator without30

hesitating or reverting back to the drinking behaviour, at least
in the near term. Resource constraints in technology can be
different, but still create conundrums.

Looking more closely at digital games, we find similar prob-
lems of control in a very different context. It is quite common35

to allow the AI only to occupy a small number of cycles per
frame as most of the resources are needed for visual represen-
tations. It is arguable whether this is a correct choice, but it can
be expected to be a given fact in most commercial products.
Including a full-fledged cognitive architecture to control mul-40

tiple cognitive agents in such an environment is in most cases
not desirable as the cognitive architecture requires both more
runtime resources and more work to design. The commercial
game Assassins Creed Unity for example, where the player ex-
plores Paris during the French Revolution, features hundreds of45

agents moving around the city. In addition, designing the cog-
nitive agents themselves is more time consuming than writing
scripted agents, and extra time spent on the design the player
might never encounter is not seen as worthwhile for the game
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developer. Game agents have in most cases the specific task to50

follow a specific designed role they are assigned to by the au-
thor. This creates a crafted experience similar to an actor in a
theatre play. The agent is not to act entirely freely. In addition,
once a game is conceived there is often considerable economic
motivation to bring it to market quickly. Consequently, the main55

interest of game AI designers and engineers is to have flexible,
modular tools for creating template agents, and then to modify
those to create the desired character outcomes.

In robotic applications the need for easily-modifiable, light-
weight but robust behaviour is driven not only by military re-60

search or humanoid robotics but also by commercial applica-
tions such as crop analysis and land scouting done by unmanned
aerial systems (UAS). Again, in these applications, a large fully
cognitive system is rarely needed but a lightweight, flexible and
modular architecture to control basic functionality is essential.65

The AI for such systems is only responsible for a limited but
important subspace of the problem at hand, e.g. to secure the
safety of the robot and its surrounding operating environment.
These underlying basic functionalities need to be fast and reli-
able requiring only minimal input. Brooks presents a solution70

to that problem with the subsumption architecture [5] which al-
lows the development of reactive agents utilising their embod-
iment. The benefit of reactive agents becomes visible when
they utilise their embodiment, it can act as a form of memory
or state, this provided a breakthrough in managing constraint75

resources [6]. In nature, a solution to faster action sequences
can be found when habitual behaviours are employed which are
learnt, fast, robust and require nearly no cognition.

The work presented here is motivated by an analysis of ex-
isting agent architectures and agent modelling environments80

for autonomous agents in digital games [7] and robotics. Ex-
isting cognitive approaches such as SOAR, ACT-R, LIDA [8]
and CRAM [9] are extremely powerful, allowing the creation
of sophisticated agents. However, due to the high complex-
ity and steep learning curve they are seldom used outside of85

academic demonstrations and simplified problem spaces. Even
where they are used, they are used primarily in communities
strongly linked to an academic environment, such as military
war games. When full cognitive reasoners or large expert sys-
tems are not needed or applicable, lightweight architectures and90

models such as Behavior-Oriented Design (bod) [10], Agile
Behaviour Design [11] and Behavior Tree (bt) [12] or pur-
pose specific architectures such as Pogamut [13], A Behavior
Language (ABL) [14], and FAtiMA Modular [15] can be used.
Purpose-specific architectures offer an optimized workflow for95

specific settings, reducing development time. Lightweight sys-
tems due to their lower additional computational cost and lower
learning curve are generally more favored in non-academic ap-
plication. These systems have to date been used most widely
in the computer games industry, a substantial part of the con-100

temporary economy that takes in more money than more tra-
ditional entertainment such as the film industry. Game AI re-
quires agents that are able to act in real-time, can be instantiated
quickly and leave the impression of human-like or animal-like
intelligence. Lightweight cognitive architectures may be used105

either for individual agents or for swarms of shallow agents in

a variety of digital environments (not only games), as well as
for small autonomous robots such as Aibo or Roomba, or even
substantial numbers of swarming robots [16, 17]. Due to the
flexible nature of the applied approaches the resulting system110

can be tailored towards a specific scenario, reducing the com-
putational cost drastically. This contrasts with most cognitive
architectures which are intended as general problem solvers ap-
plicable to a wide range of problems. To better facilitate de-
velopers and researchers using lightweight architectures, and to115

enrich their action selection and behaviour arbitration mecha-
nisms we have been examining bio-mimetic models. We de-
veloped a mechanism based on a accumulative ramp function
[18], similar to the ramp activation found in the mammalian
brain cells responsible for goal switching. The model is based120

on a system of dopaminergic cells in the Basal Ganglia of the
mammalian brain [19, 20]. Our model is designed to be appli-
cable to a broad range of systems. In keeping with lightweight
architectures, it has a low computational overhead, making it
highly versatile. The final model allows for an easy way to125

control the maintenance, inhibition and switching of high level
behaviours in cases where static linear goal structures or prede-
fined behaviour switching is undesirable for the action selection
mechanism.

Action selection is of course a crucial part to embodied cog-130

nition, and even lightweight models such as those discussed
here are of interest to philosophers of mind. First, evolution
also favors lower costs, so sometimes insights into nature can
be gathered from the experience of engineering, despite the dif-
ferences in implementation between massively parallel biology135

and essentially sequential silicon [21]. Even models of con-
sciousness do not necessarily need to be implemented at the
neural level [22, 23]. Second, lightweight architectures oper-
ate at a level of abstraction more similar to most philosophy of
mind, so are more easily comparable. Finally, more agile and140

accessible AI development allows more exploration of theories
and their consequences. This allows philosophers and others in
the social sciences and humanities another way to inform their
intuitions about the consequences of their models [24]. Here we
emphasize creating lightweight yet cognitively-motivated mod-145

els to observe and perceive the world in sufficient detail to react
or behave naturally. Our approach uses a functional representa-
tion to model phenomena which are expressed in a similar way
in the neuronal structures of the mammalian brain. We care
about and focus on the outcome of modules—both the actual150

brain structures and our functional modules—and aim at repre-
senting the functional outcome accurately rather than the actual
underlying structure.

As computers get more powerful a shift towards more closely
representing the underlying structures may be possible, although155

nature of course has had billions of years to create powerful
structures such as the brain, and its integral host our body. In
digital agents and robotics most of the organic structure evolved
by nature is not needed to create similar outcomes so we focus
on creating modules which are functionally similar instead of160

mechanistically similar.
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The rest of the article is organized as follows. In the next section
we describe our motivation for biomimetic modeling and intro-
duce the extended ramp model and the ideas behind it. This is
followed by illustrating an example domain where our approach165

can be tested and evaluated, in the same setting that was used by
an already-published approach—Flexible Latching [25]. After
presenting our ideas we discuss our results and intended future
work, including a discussion of evaluation strategies which con-
cludes the article.170

2. Bio-Mimetic Models

In this section we discuss the bio-mimetic model and its
implications. We start off by presenting our motivation for ap-
plying bio-mimetic concepts to action selection schemes and
present our ramp-function arbitration mechanism. We take as a175

starting point for our research Flexible Latching [25], see Fig-
ure 1. Flexible Latching introduces a simple latch which re-
duces dithering—a rapid switching between goals which can
mean that more time is spent in transition than in useful pursuit
and consumption of single goals. Dithering between different180

behaviours is quite common in nature when multiple goals col-
lide, expressed and observable as hesitation or thrashing. Un-
latched behaviours may execute once immediately after their
trigger condition is met, but stop quickly thereafter. The latch
however acts similarly to a hysteresis function.185

For the sake of an illustration imagine following example:
a leaking canister which loses water over time. As soon as a
lower threshold, say δ, is reached the canister is filled up to
that threshold. It is easy to imagine that if you only refill up to
δ whenever the water is below the threshold the time between190

each re-fill is relatively short.

Figure 1: A Flexible Latch using two thresholds—δ and φ—to control dither-
ing. In a simple latch, a goal can take control from when activation reaches the
lower boundary δ until is reaches the upper boundary φ. Reaching φ, the goal
is inhibited until activation falls below δ again. A flexible latch adds a third
threshold, ψ, above which a latch is recomputed if the agent is interrupted. [25]
find the best threshold for ψ to be ψ = δ.

A strict latch now adds another threshold φ on top. Whenever
the water now reaches δ you spend all your actions to refill the
water level until it reaches φ. The exception is that if a higher
priority goal triggers, it may control action selection, but when195

it is satisfied, control is returned to the latched behaviour. The
inclusion of the strict latch allows extra time between φ and δ
which can be spent on alternative actions. Flexible Latching

extends the strict latching by acknowledging interruptions and
re-evaluating whether the current goal should still be pursued200

afterwards. [25] show that this is still more efficient, as the
agents do not pursue goals that are no longer urgent nor cur-
rently convenient after the interruption.

Taking now a look at other selection processes inspired by
nature, neural networks (NN) are the most prominent. Using a205

neural network it is possible to learn and solve selection tasks
for problems where an algorithmic description of the problem
is not known or costly. The NN is able to approach a general
solution only by providing it with a set of specific, known in-
put and solution pairs to adapt itself towards the solution space.210

However, for NNs the overall action selection or computational
process is not transparent, thus tweaking a Neural Network to
perform in a certain way is difficult. Additionally, NNs are
normally trained to solve problems where sufficient and non-
sparse training data is available rather than problems like action215

selection or real-time behavioural control in changing or un-
trained situations that offer no or sparse a priori training data.
An example for a commercial game using a neural network is
Black&White by Lionhead which used a neural net for training
a few aspects of the player’s pets intelligence. Recent success220

in Deep Networks and reinforcement learning in the games do-
main shows great promise to apply such techniques in special
cases where the search space is either very limited or training
data exists. For example the Atari general game playing envi-
ronment is a popular testbed for neural network research [26]225

as it offers a vast variety of examples. However, approaches
such as AlphaGo [27] or a General Atatri player using Deep
Networks [28] require immense training time and data as well
as a low-resolution, low-dimensional input, features which are
increasingly difficult in real-time applications to complex envi-230

ronments.
For this work let us take a closer look at a single neuron

model first as it reveals some interesting mechanisms which
can be exploited in other contexts as well. There exists a vari-
ety of activation functions for neuronal models. Those include235

the spike or Dirac function used in Spiking Neural Networks
(SNN), the sigmoid which has a fixed output range between
zero and one, and the ramp function which combines a mono-
tonic increased activation and an instant activation drop. This
last forms the basis of the model presented here. Biomimetic240

models like NNs are an important asset of the computer science
toolset. They present good and scalable solutions for address-
ing complex issues. We found that the ramp function is favored
for goal arbitration [29], as we review in the following section.
This finding motivates our present approach as we believe it to245

be a simple and elegant mechanism for augmentation.

3. The Extended Ramp Goal Model (Ergo)

Here we describe our biologically-inspired action selection
mechanism, the Extended Ramp Goal model (Ergo), starting
from its biological inspiration. Current research suggests, that250

dopaminergic cells in the Basal Ganglia of the mammalian brain
are likely to be responsible for the maintenance and switching
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Figure 2: A single ramp function used for inhibiting a behaviour. A behaviour
controlled by a ramp is only inhibited when another behaviour gains a higher
activation or once the goal is reached. Once a behaviour completes it instantly
drops activation. The behaviour completes its goal at time a, stopping at activa-
tion level b and dropping to zero activation.

of goals and thus behaviours [19, 20]. Clusters of those cells ex-
hibit a ramp-like activation behaviour when in pursuit of a goal,
which we will use as a basis for our current model, see Figure255

2. The two important features of our ramp are the linear, strictly
monotonic climbing of the activation and the instant activation
drop exhibited when reaching the success criteria for the goal.
These properties provide a predictable yet flexible mechanism.

Figure 3: Two behaviours using ramps for action selection. From time t = 0 to
t = a, the first behaviour is active having a higher activation due to the larger
inclination. This is visible by the difference in activations b and c. At time t
= a, the success criterion for the first behaviour is met and the activation drops
resulting in a switch of the active behaviour to the second one. The second
behaviour reaches its goal at time t = d allowing other behaviours to take over
again.

We believe that the linear monotonic inclination minimizes the260

direct competition between behaviours. In our approach, we
focus specifically on lightweight goal maintenance and switch-
ing. The approach is designed to give an active behaviour a
higher inclination than all other behaviours which was inspired
by [29]. Redish argues that the active ventral striatal antici-265

patory ramp cells (or often called goal cells in the literature)
increase their firing pattern upon approaching a goal. The re-
maining ramp cells do not increase their firing pattern during

that time. We abstract this cluster firing behaviour in our model
and represent it as a larger inclination gain for the active cell270

and a lower one for non-active cells. As the climbing behaviour
of the ramp is strictly monotonic and the inclination of active
behaviours is larger, the difference between the active behaviour
and the inactive ones grows, see Figure 3. Our representation
of the different activation levels, Figure 3, is also backed up by275

the literature [20] as the anterior cingulate cortex (ACC) seems
to change strategies based on evaluating possible reward levels.

Our approach using different inclinations makes it harder to
dither between highly prioritized goals even when loosing focus
for short period of time. The instant drop in activation automat-280

ically inhibits a behaviour from being executed again. Thus,
the need for stopping behaviour dithering is reduced due to the
higher level of the newly active behaviour which is a key ele-
ment of our model. If multiple behaviours have an equally large
activation and are primed for activation, one has to be chosen285

randomly. But this is only the case at the start of a new agent.
Multiple behaviours could start with the same base activation
and they are at that point all inactive in which case one has to
be chosen. In nature this situation rarely occurs, one example
would be being born and having to completely re-evaluate how290

to gain oxygen and nutrition. For our experiments, we initial-
ized the resources of each agent using a random distribution
within the bounds of δ and φ. This minimizes not only possi-
ble direct conflicts at startup time, it also provides more activity
and liveliness to the simulation, which we discuss in the next295

section.
The latch is modelled using the internal motivational states

of an agent, for example hunger or thirst. In contrast, the ramp
uses an internal hidden tracker of its activation, a signal for
urgent execution of the integrated behaviour, and a signal for300

when the behaviour achieved its goal. In this respect, the ex-
tended ramp model can also be used as a model of curiosity
[30]. The model properties, such as the monotic inclination
and the rapid activation drop, allow for modelling diverse cu-
riosity such as the later described exploration. However, Ergo305

goes beyond that by offering a way to model specific curiosity
[31], such as pursuing a specific goal until it is reached. This
is possible as it is harder to disrupt an active behaviour due to
the higher inclination and the constant gain. By augmenting
specific behaviours the designer has the possibility to create cu-310

rious drives for an agent. The signals our model listens to are
dealt with asynchronously reducing the chance that behaviours
block each other or the agent. Ergo’s integration does not in-
troduce such additional conflicts by waiting for a trigger signal.
This allows us to run the computation of the ramp and its aug-315

mentation even on large sets of behaviours in parallel. In the
basic system just described, the ramp is able to deal well with
competing behaviours but it is not able to react quickly in a
natural, believable way in urgent, changing situations.

To handle those rapid challenges we extend the original320

concept of the ramp. We introduce an exponential inclination
gain whenever a behaviour needs to execute because of eminent
danger or some other large risk. This extension defines our new
mechanism, the Extended Ramp Goal (Ergo) model. The expo-
nential gain in activation still takes a certain amount of time be-325
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fore triggering a behaviour switch to the behaviour which needs
to execute. The resulting behaviour is similar to the phenom-
ena observable in the mammalian brain, where it also takes a
small amount of time for activation to spread between within a
region before a task switch is triggered. This spreading activa-330

tion before a behaviour switch can be found in situations when
a change in dopamine levels happens or when a change and
alignment in neuronal firing patterns happens. The time span
between the trigger and the execution of the behaviour however
is small.335

Most related work [32, 33] apply the ramp function in the
context of neural networks for goal maintenance. In contrast
to those approaches, ours is the first attempt to apply a ramp-
like criteria directly to a lightweight behaviour arbitration pro-
cess without using a neural network to control the maintenance.340

Using Ergo to augment action should work without additional
hand-tuning of its parameters, however, as the model can be
interpreted as a multi-layer feed forward network which is pos-
sible by only looking at the ergo parameters. Having now a
set of identical neural nodes it is possible to use any parameter345

optimisation technique or reinforcement learning to optimise
the agent. However, as each node reflects altering a specific
behaviour the network of ergo nodes can also be hand-tuned,
which was a development focus. The next section presents an
example domain in which we tested Ergo.350

To summarize: Current research on the Basal Ganglia sug-
gests that the goal maintenance in the mammalian brain is con-
trolled by dopaminergic cells which in turn exhibit a ramp-like
activation. Here we propose a new mechanism, Ergo, which
extends the application of the ramp from neural networks into355

lighter-weight, more abstract action selection systems. We also
modify the function so it can respond to urgent situations. An
additional benefit of the model is that it also be used to model
curiosity. In the next section we describe a test domain where
multiple conflicting goals can arise for an action selection mech-360

anisms. Natural agents from single cell paramecia to human
beings face this situation constantly, for example should you
continue reading this article or go write one of your own? Ad-
ditional information on the agents’ behaviours is presented to
allow for a better understanding of the domain and the possible365

actions of an agent.

4. Example Domain

To develop and test our model, we chose Behavior Oriented
Design (BOD) as our test-bed lightweight architecture. BOD
allows the description of cognitive agents utilizing the parallel-370

rooted slipstack hierarchical (POSH) dynamic planning language.
POSH includes a linear goal structure where each goal has a
fixed priority with respect to the others, although each goal can
be inhibited either by having unmet preconditions or through a
system of scheduling. One reason POSH is well suited for our375

experiments is because it has already been fitted with a mod-
ification to this structure to allow more biologically plausible
action selection. This mechanism is Flexible Latching [25] de-
scribed earlier in Section 3. As a simulation environment we
use the MASON agent-based modeling platform (Luke, et al.380

Figure 4: A representation of the simulation environment for testing the goal
ramp model in a Mason agent simulation. The environment contains two food
and two water sources equidistant from the center. All agents spawn at the
center of the simulation at time t = 0.

2003) because of it offers a well-defined approach to agent sim-
ulation and provides an easy-to-use Java interface designed for
agent based-modelling. The simulation environment is identi-
cal to Sim1 used by [25]. It contains two resource types, wa-
ter and food, equidistant from the center of a map. All agents385

spawn at the center of the map, see Figure 4.
Agents can travel a fixed distance in any direction for every

tick of the system clock. If they reach the edge of the map they
enter at the opposite side again allowing them to travel from the
left food source to the right food source by going left. Due to390

the layout of the map there is no benefit to either travel over
the map edges or staying within the boundaries as the distances
are exactly the same. It is also noteworthy that an agent can-
not block a path, resource, or another agent in any way, which
would be possible in nature but introduces unnecessarily com-395

plicated dynamics for the task at hand. Each agent constantly
uses a certain amount of energy and water to survive, simulat-
ing natural metabolic costs and presenting the problem of self-
sustenance. The amount of energy needed does not change dur-
ing the simulation even if an agent does not move. If an agent’s400

accumulated store of one of the two resources it needs drops
to zero, then the agent dies. All agents are initialized within a
lower boundary δ and upper boundary φ for the two resources.
Whenever an agent is feeding from one the resources it gains
energy. The gain is set to be larger than the consumption oth-405

erwise the agent would have no chance of surviving. For our
setting the gain is set to ten times the consumption per tick. To
allow the agent to track when it urgently needs to feed on a re-
source we make its intelligence sensitive to when its units of a
specific resource drop below δ—an artificial threshold we use410

to model hunger.
Whenever the units reach the upper bound φ, the agent is

programmed to detect that it has satisfied the need for that re-
source, so that it may distribute its time across other of its goals.
The shortest path between one food and water resource requires415

an agent to spend approximately 10 units of both resources

5



Figure 5: condensed view of a drive collection which specifies the behaviour
of one of the agents in the simulation. The action plan contains four different
behaviour drives which are prioritized from top to bottom. Drive B1 and B2
have the same priority, meaning they are equally important in general and their
priority must be arbitrated in some sensible manner so both can be achieved.

which is the amount it can gain from feeding for one tick. For
the present experimental setting we do not deplete the resources
so the agent only needs to take care of consuming enough food
and water to stay alive and pursue its other goals. A more realis-420

tic setting might include patchy, degenerating resources, but we
are not introducing this level of complexity to our preliminary
experiments. At any rate, optimal foraging theory is fairly well
understood [34]. What we are researching here are lightweight
mechanisms for goal arbitration. In Figure 5 a simplified ver-425

sion of the POSH action plan is shown which is used for all
agents. Each agent has four drives which are prioritized based
on each drive’s position in the action plan. Each drive would
satisfy a specific goal of the agent, for example in case of be-
haviour B1 it is the need to drink. In POSH those goals are430

specified by internal or external senses, in this case the sense
wants to drink. There is a special case which is behaviour B4—
the lowest-priority drive. The lowest drive should always be
able to execute as it is treated as a default or fallback. If no
drive can be executed the plan terminates and the agent stops435

and terminates as well. The behaviours B1 and B2 have equal
priority indicating they are equally important for the agent—
both are required for its survival. At this point we introduce our
biomimetic augmentations to ensure that both drives are met in
an efficient way, with neither dithering nor neglect.440

5. Behavioural Outcomes

In this article we present a new biomimetic model—Ergo—
based on research on the Basal Ganglia for augmenting existing
action selection mechanisms [18]. The test-bed has been used
to evaluate the implementation of the model against a compa-445

rable approach—Flexible Latching. This allows us to compare
whether a new perspective on behaviour arbitration might be

more intuitive and flexible than existing approaches. For our
experiments, all behaviours use the same configuration of the
extended ramp with the same inclination gain. Future work450

should involve optimizing the inclination gain based on initial
priorities of the behaviours allowing a more fine grained ap-
proach to scheduling the arbitration process. To judge the qual-
ity of a well performing augmentation we introduce following
evaluation criteria:455

• time the agent remains alive

• time left for other behaviours

• robustness in face of noise and interruptions

• programmability

We ran a set of 50 independent trials per parameter to analyse460

their influence on the effectiveness of the augmentation and re-
ran all simulation with the Flexible Latching model to have a
direct comparison on the same system. We first analysed how
well both approaches—Flexible Latching and Ergo—are able
to handle non hostile environments.465

In non-hostile environments both models perform well. In
all trials for this setting, the latched and Ergo augmented agents
remain alive being able to explore, feed, and groom. The Flex-
ible Latch performed more consummatory actions in terms of
the total amount of all performed actions. This is because the470

latch allows the agent to accumulate up to a certain amount
of resources needed to survive and then spend the remaining
time on lower priority behaviours. As grooming is harder to
achieve than exploration, due to requiring a partner to groom,
the latched behaviour is executing a large amount of exploration475

moves. In contrast to this the Ergo agent—augmented with
the extended ramp—is trying to spend the extra time on all be-
haviours evenly. This resulted in reducing the amount of explo-
ration moves drastically, while increasing the amount of groom-
ing. As grooming is an activity with is only possible under con-480

ditions, yet the agent still tries to pursue it as much as possible
not concentrating on other activities it can also be seen as a be-
haviour employing specific curiosity [31]. The agent searches
for partners to groom, moves towards on of them and then fo-
cuses on that activity. Under less hostile conditions the Flex-485

ible Latch is performing equal or better than Ergo in the total
amount of actions. Ergo however only responds to agent signals
such as goal reached or urgent—minimizing the interdepen-
dence between agent and selection mechanism— which affects
the complexity and robustness of the software design. It does490

not optimize free time as efficiently as the scenario-optimized
Flexible Latch. We currently have not specified problem de-
pendent parameters in Ergo to allow for a better integration into
generic action selection mechanisms. Adjusting Ergo after in-
tegration of its vanilla state would provide a significant perfor-495

mance boost but needs extra time which we on purpose wanted
to minimize. Moving however from non-hostile environments
towards an increasingly hostile and noisy setting, and given the
low amount of resources the agent can store, the results change
drastically. As we introduce disruptions and interrupts into the500

agents’ environment, the static latch agent has a large action
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count drop, even by introducing only one interruption per be-
haviour. The Flexible Latch agent outperforms the agent with
a static latch, verifying the findings of [25], yet it is now far
less effective than Ergo. The Flexible Latch with a single in-505

terruption already drops a third of its consummatory actions.
In contrast, the increased noise and hostility of the environment
makes the advantages of Ergo visible. Continuing the pursuit of
a set goal when faced with distractions is an important feature
of employing specific curiosity as it allows the agent to concen-510

trate its attention on the task in front of it. The whole range of
executable behaviours scales in a way that allows more agents
to stay alive, active and lively—demonstrating the whole range
of possible behaviours. The Ergo action activity only drops by
a tenth compared to the noise-free setting. The more interrup-515

tions we introduce the bigger the impact on the death rate of
the latched agents whereas a significantly higher percentage of
the Ergo augmented agents remain alive. Setting the environ-
ment to more hostile settings shows that the ramp adapts the
agent quite well to the harsher conditions and benefits from the520

exponential influence of the urgency on the inhibition process.
The exhibited behaviour is similar to focusing on a given task
or under stress. This means that the focus is harder to lose and
distractions normally get ignored to guarantee that this essential
task the animal is focusing on can be achieved. A technical dis-525

cussion of the model and a statistical analysis can be found in
[18], however, further work is needed to better analyse the influ-
ence of noise and interruptions on Ergo augmented behaviour
and verify our findings. A focus will also be on identifying
the impact inclination gain and the exponential modifier for the530

gain on the robustness of generic lightweight agents.

6. Conclusion

Our current results indicate that the ramp function outper-
forms the Flexible Latching in certain scenarios even when it
is not hand-adapted for the specific problem. It offers some535

unique features which offer additional interesting potential, such
as an approach to modelling curiosity. The ramp acts only upon
a small set of signals and needs less fine-tuning to perform well.
It has an easy-to-understand visual representation of the main-
tenance and inhibition process presenting what we believe to be540

an intuitive approach. Future work is needed on the influence
of finer grained prioritization and the influence of the ramps
specific inclination gain for particular behaviours. This would
allow us to better understand if Ergo can scale well to a variety
of different problems. Additionally, future work is needed to545

see if an augmented agent with multiple Ergo instances can be
automatically tuned through an interpretation of Ergo nodes as
a multi-layer neural network.

More generally we have discussed the ability of lightweight
cognitive architectures and their importance in a variety of do-550

mains. Due to their lower computational overhead and high
practical applicability it is our belief that research on advanc-
ing those architectures deserves more attention. This research
could provide fruitful results for example for the games indus-
try by expanding beyond the current capabilities of agent design555

and architectures, but also to robotics, and scientific and philo-
sophical simulations. To deepen our understanding of chal-
lenges in those domains we are working on a project to apply
our lightweight augmentation to the domain of digital games
and are aiming to experiment with perceived behaviour selec-560

tion and how different users compare selection processes in vir-
tual agents. For this we developed a prototypical smartphone
game for android phones. To return to our earlier discussion of
the relationship between research in lightweight architectures
and the philosophy of mind, we hope that our discussion has565

engaged the interest of the reader and made our point for us.
Architectures like those presented here, including the currently-
popular spreading-activation architectures such as the Global
Workspace Theory (GWT) [35, 36] and LIDA cannot account
for all of action selection [25]. We know that many details570

of action selection are handled by other, simpler neurological
mechanisms in real primates, and computer science gives us a
good reason why: combinatorics [21]. But goal selection—the
focus of interest—is a differentiable sub-part of action selection
overall, one that requires competition between all of what may575

well be a limited set of contenders. We hope the work presented
here will be useful in a large variety of applications, including
perhaps better understanding Nature itself.
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