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Abstract. We propose, as a promising future direction of
research and development, the use of immersive technologies
(particularly Virtual Reality (VR)) to visualise the operation
of game AI algorithms. This has obvious applications when
developing AI agents for VR experiences, but the affordances
of VR may also provide wider insights and more generally
applicable tools.

1 Introduction

Visualisation is one of the most important tools of the re-
searcher or developer working in game AI [3]. Visualising the
operation of an AI algorithm helps to identify bugs, observe
the effects of tweaking parameters, and gain insight into the
operation of a system.

Monte Carlo Tree Search (MCTS) [7, 4] is a game tree
search algorithm which has proven particularly successful
in many challenging game AI domains and decision prob-
lems [2]. MCTS requires only a forward simulation model, and
is an anytime algorithm which can generally yield a reason-
ably good strategy after a short amount of computation time
(though is guaranteed to converge upon an optimal strategy as
the computation time tends to infinity). MCTS is a reinforce-
ment learning algorithm [19], however its basis in state-action
trees makes it easier to visualise than some other machine
learning algorithms.

The principles of effective visualisation of data on a 2-
dimensional page or screen have been well studied [17]. Tech-
nologies such as Virtual Reality (VR), Augmented Reality
(AR) and Mixed Reality (MR) introduce new possibilities for
visualisation, allowing for immersive 3D renderings of com-
plex data. These possibilities are beginning to be explored
across a variety of domains. We propose that immersive visu-
alisation technology holds a great deal of promise for devel-
opers to explore, refine and understand game AI techniques,
both for interactive VR/AR/MR experiences and for more
traditional screen-based games.

2 Visualising game AI

Visualisation of AI algorithms is useful from a software en-
gineering point of view. Champandard [3] identifies three
key benefits of visualising AI systems during game develop-
ment: ensuring code correctness, identifying bugs, and to as-
sist tweaking and tuning.
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Less commonly, AI visualisations can be used as a gameplay
mechanic. In the stealth game Third Eye Crime [6], the game
display is overlaid with a heat-map representing the enemies’
beliefs regarding the location of the player. This allows the
player to predict the behaviour of the enemies, leading to
unique gameplay possibilities. Treanor et al [16] identify AI
visualisation as a game design pattern for foregrounding AI,
however it is relatively under-explored in commercial games.

3 Visualising MCTS

Visualisation is also useful when developing new AI meth-
ods in a research context. This has the benefits identified by
Champandard [3], and additionally can lead to new insights
into how the algorithm works. Figure 1 shows an example
of visualisations created by the author for the Node Recy-
cling MCTS algorithm described in [12]. These give some in-
sight into the operation of the algorithm, though this is lim-
ited by the restrictions of reproducing the visualisation in a
static form. The author also developed a dynamic visualisa-
tion which shows the process “live” as the search progresses,
which gives much greater insight. Figure 2 shows a different
visualisation of the same algorithm, showing the relative fre-
quencies with which available moves are explored and how
the identity of the “best” move changes as the search pro-
gresses. This visualisation is effective on the static page: the
information it displays is one-dimensional, allowing the sec-
ond dimension to be used for time.

Figures 3 and 4 show two other visualisation applications
developed by the author in order to understand and debug
implementations of MCTS. TreeViewer (Figure 3) displays
an MCTS search tree, loaded from disk in a simple XML file
format. It allows nodes to be sorted, expanded, collapsed and
interrogated for various property values. It is possible, though
cumbersome, to achieve some of these tasks using the built-in
debugger in an IDE such as Microsoft Visual Studio, however
a custom application allows the developer much more control
over how the tree is laid out on the screen.

Figure 4 shows an interactive demo application which al-
lows a user to play a range of simple board games against an
MCTS opponent. The search tree built by the MCTS player is
shown on the right-hand side of the screen, and builds in real-
time as the search progresses. The colour of the lines shows
the average reward for the corresponding node in the tree,
and the thickness of the line shows the number of visits, giv-
ing an at-a-glance picture of the most important quantities in
the search tree. For Connect 4, the visualisation also has the
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Figure 1. Sample visualisations of the Node Recycling MCTS algorithm described in [12], showing how the search tree is built and
destroyed over time under different parameter settings.

nice property that the children of a node from left to right
correspond to the moves of the game, i.e. placing a counter
in a column from left to right, making it easy to see how the
tree corresponds to how the game plays out. The author and
his colleagues frequently use this demo application in out-
reach events, in teaching and in and other presentations, and
find it to be an extremely effective aid to explaining how the
algorithm works.

Figure 5 shows a screenshot from the Multi-Objective Phys-
ical Travelling Salesman Problem (MO-PTSP) [11]. This is a
game in which a spaceship must be piloted around a maze,
passing through a number of checkpoints in any order. The
screenshot shows an MCTS-based controller [13] playing the
game. Overlaid onto the display of the game environment are
the expected trajectory of the spaceship according to the most
explored line of play in the search tree (visible as a green
line protruding from the ship), and the distance map used
to provide heuristic guidance to the search (visible as white
contour lines). Though quite simple, these visualisations pro-
vided much insight when developing and tweaking the agent,
and it is difficult to imagine the final agent being as effective
were it not for this.

4 VR/AR visualisations

In 2000, when VR technology was much less sophisticated
than today, van Dam et al [18] discussed the promise of VR
for scientific visualisation and highlighted some examples of
its use. More recently, VR and other immersive technologies
have been applied to the visualisation of graphs [5], molecu-
lar structures [15], medical data [10] and urban planning [8],
among others. The aesthetic appeal of VR visualisations and
the sense of immersion and presence they afford often blurs

the line between visualisation and art, as in the Mutator VR
project [14] for example.

AR has seen similarly wide deployment, particularly in vi-
sualisations for archtecture and engineering; see [9] for a re-
cent survey, and [1] for an example of commercial deployment.

As van Dam et al [18] point out, the benefit of scientific vi-
sualisation is to exploit the human brain’s aptitude for visual
processing and pattern recognition. VR brings several bene-
fits over screen-based representations. The addition of an ex-
tra spatial dimension (though simulated through stereoscopic
displays and head tracking) allows larger and more complex
data sets to be visualised without clutter. The advanced mo-
tion tracking and haptics of modern input devices such as the
HTC Vive, Oculus Touch and Leap Motion allow the provi-
sion of more intuitive and expressive ways of interacting with
the data. AR has the obvious benefit that visualisations can
be overlaid onto real environments; in contrast, VR lends it-
self to overlaying information onto simulated or reconstructed
environments, or removing the environment entirely.

5 Future directions

Visualisations of game AI are often most effective when over-
laid onto the game world [3]. If the game world is experienced
in VR/AR rather than on a screen, it makes sense for the
overlay to be present in the virtual/augmented space as well.

However, VR visualisations have potential even for applica-
tions of AI outside of VR/AR. When visualising MCTS trees,
a limiting factor tends to be the number of nodes that can
fit onto the screen before the information becomes too dense
to be useful. The extra spatial dimension added by VR, as
well as the potential to visualise information at room-scale or
even larger rather than confined to the page or screen, could
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Figure 2. Sample visualisations of the Node Recycling MCTS algorithm described in [12], showing how the visit frequencies of moves
change over time. The x-axis represents the progress of the MCTS algorithm. Each vertical cross-section of the graph shows the relative

sizes of the trees below each move from the root. The dark region shows the move with the most visits, i.e. the move which would be
selected if the search were halted at this point.



Figure 3. Screenshot of TreeViewer, an application for
exploring MCTS search trees.

Figure 4. Screenshot of InteractiveDemo, an application which
visualises the MCTS tree built by an AI opponent in the game

Connect 4.

Figure 5. Visualisation for an MCTS-based agent in the
Multi-Objective Physical Travelling Salesman Problem.

allow for much larger trees to be visualised effectively. Graph
visualisation and interaction techniques like those proposed
by Erra et al [5] could also prove useful.

The MCTS visualisations described in Section 3 are func-
tional rather than aesthetically pleasing, however there is still
an appeal to watching the trees grow and evolve in real-time.
VR visualisations lend themselves naturally to crossover with
the visual arts, and the automatic sense of presence and im-
mersion given by modern VR hardware means that visualisa-
tions that would look relatively unsophisticated on a screen
can look much more impressive and appealing. More attrac-
tive and engaging visualisations are beneficial in scientific out-
reach and education, and may also fit better with the high
level of visual polish expected of video games. This may lead
more game developers to treat AI visualisations not merely as
a debugging tool but as a potential source of game mechan-
ics, leading to wider exploration of Treanor et al’s [16] “AI is
visualised” design pattern.
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