A Parameter-Space Design Methodology for Casual Creators

Simon Colton, Mark J. Nelson, Edward J. Powley, Swen E. Gaudl
Rob Saunders, Blanca Pérez Ferrer, Peter Ivey and Michael Cook
The MetaMakers Institute, Falmouth University, UK

www.metamakersinstitute.com

Abstract

Casual creators are creativity support tools intended to be fun
and easy to use for exploratory creation. We have built ca-
sual creators called fluidic game designers, which support
exploratory game design directly on mobile devices. These
work by encoding games in a parameterised design space
and enabling player/designers to create new games by vary-
ing the parameters in a design interface and seeing changes
in their design instantly. A question largely unanswered by
existing work is how to choose a suitable parameter space.
We describe a methodology for specifying and implement-
ing parameterised design spaces for casual creators, a context
that requires balancing a large and expressive space against
a manageable and fun user interface. This methodology was
derived through investigating and generalising how the pa-
rameter spaces for three fluidic games were conceived. It
suggests an iterative process whereby parameters are sourced
in seven different ways, within a dynamic of incremental ex-
pansion and contraction of the parameter spaces.

Introduction

A casual creator is design software for creativity support
that is oriented towards exploration, by definition enjoy-
able to use and with a low barrier to entry. Compton and
Mateas (2015) describe the act of making with casual cre-
ators as an: “intrinsically pleasurable activity, rather than
an extrinsically-motivated way to accomplish tasks”. Hence
casual creators contrast with standard design software such
as Adobe’s Creative Suite, which typically emphasise large
feature sets, often with a complex interface, oriented to-
wards professional productivity. We have been building
casual creators that we call fluidic game designers, which
support exploratory videogame design on mobile devices
(smartphones and tablets) in minutes and hours rather than
days and weeks, and without a requirement for program-
ming (Nelson et al. 2017a; 2017b; Gaudl et al. 2017).

Our motivation is to bring design of mobile games to the
kind of large and diverse audience that characterises mobile-
game playing, making casual creators that are more akin to
casual games than to professional game-design tools. Flu-
idic games are designed to reduce the context gap between
play and design, by allowing games to be designed on the
same devices that they’re played on, enabling the user to
rapidly alternate between those two modes of game player
and game designer, enjoying themselves in both roles.

A casual creator can be seen as an accessible, enjoyable
design space explorer — a class of design tools that visu-
alise and support navigation of a space of design possibilities
supported by the tool, dubbed the design space (Woodbury
and Burrow 2006a; 2006b). For fluidic games, we use para-
metric design as the technical approach for representing the
design possibilities that we support (Woodbury 2010). Para-
metric design represents design possibilities through an enu-
merated set of parameters, where each parameter is a pos-
sible design choice. Thus the design space is constructed
explicitly: N parameters produce an N-dimensional design
space, and each design is one point in this space, i.e. one
choice of the IV parameters. Although computer-supported
parametric design is well studied, to our knowledge there is
little practical advice on how to construct the actual param-
eterised design spaces, especially for our purpose of casual
creation (versus a context such as engineering optimisation).

Parametric design was pioneered in computer graphics
and architecture, where parameters often fall out directly
from a choice of “universal” representation, such as a math-
ematical representation of 3D surfaces. The parameter space
then is dictated by this choice of surface representation — for
example, choosing a Coons-style (Coons 1967) or NURBS-
style (Piegl 1991) surface brings with it a set of parameters.
This is also sometimes the case in evolutionary art, where
a general representation such as a Compositional Pattern-
Producing Network (CPPN) can be used as the basis for de-
sign, with parameters falling directly out of the way CPPNs
are constructed, as described in (Stanley 2007).

We’re sceptical that a useful parameter space for games,
especially one for end-user design, can take the form of a
similar universal representation. Some parameters will be
dictated by underlying technology, such as a physics en-
gine or lighting model, but to cover a meaningful space of
casual games requires parameters for characters, player in-
teractions, collisions, dynamics and pacing, visuals, music
and audio, scoring, progression and win conditions. Game
description languages have identified and formalised many
such elements (Schaul 2014; Browne and Maire 2010), but
do not in themselves explain how to design a usable parame-
terised representation. Our main contribution here is to pro-
pose a methodology for doing so.

We outline the methods we have used to iteratively build
parametric design spaces for fluidic games. The specifica-

tion of each design space is driven by the twin goals of cap-
turing a meaningful space of games that offers a degree of
variety and satisfaction, while providing a simple, enjoyable
and comprehensible user interface for design. These two
goals are in tension, since expanding creative possibilities
requires more parameters and more choices, which produces
more complex user interfaces. To address this, our method-
ology consists of seven different ways to derive parameters
within a dynamic of incremental expansion and contraction
of parametric spaces in close interplay with the design of
user interfaces to navigate them.

To illustrate how and why we arrived at this methodology,
we first summarise the development of Gamika Technolo-
gies, a parameterised game engine. We initially built it by
deriving 284 parameters and implementing a user interface
called Cillr to navigate the parameter space. We describe
the parameters and the drawbacks to Cillr as an application
for developing casual games. Following this, we describe
three fluidic games, namely No Second Chance, Wevva and
Blasta, which were built by tightly coupling the design of
a more focused parameter space with a casual-creator de-
sign interface. For each, we describe the derivation of the
parameter space and the design of its corresponding casual
creator interface, the kinds of games afforded, and some ex-
periments and playtests. This enables us to subsequently
present a generalised methodology for parameter-space de-
sign of casual creators.

Gamika Technologies

Gamika began as an iOS app for evolutionary art, based on
work in (Colton, Cook, and Raad 2011). An initial set of
parameters were derived and exposed in a Ul to control the
art generator. These were then extended to enable the de-
sign of digital fascinators, i.e., small visual toys designed
to hold a player’s attention for a few minutes (Pérez Ferrer
et al. 2016). We built several prototypes to turn the ab-
stract art pieces into interactive toys, One prototype was a
“whack-a-mole” style game, where players tap particles atop
the image before they escape. Another was a safecracking
game, where the image is split into concentric rings which
the player must re-align. A third was a clone of the classic
game Breakout, with bricks made from the art.

The fourth prototype, which we called Friends & Foes,
emerged as the most promising. This used a feature in the
i0S SpriteKit API: converting an image into an object with
realistic simulated 2D rigid-body physics based on its con-
tours. In Friends & Foes, the art image is pinned to the centre
of the screen, with the player controlling its rotation. Green
and red balls (the eponymous “friends” and “foes”) spawn
at the edges of the screen and are pulled towards the centre.
The aim of the game is to have more friends than foes on
screen when the timer reaches zero, by using the art image
to bat away the foes, but not the friends. Friends & Foes had
promise as a game: it requires equal parts tactics and dexter-
ity, and has “hero to zero” moments: one careless move can
result in the loss of all the friends accumulated so far. It also
depends very strongly on the abstract art image, so multiple
levels with varying difficulties were possible. For instance, a
rectangular image gives a very different playing experience

to a spiral shaped one, which is different again to a smooth
circular shape (which makes the game all but unplayable).

Given this promise, in line with producing a casual creator
app, we exposed a number of hard-coded values in the soft-
ware for Friends & Foes as changeable parameters in a user
interface called Cillr (see below). In particular, we exposed:
the ratio of friends to foes, their spawning rates, speeds and
bounciness, and the time limit. These parameters could be
tuned differently for friends and foes, so for example the
game was made easier by making the foes bouncier (hence
easier to bat away) than the friends. To turn this prototype
into a game development engine, we continued to identify
and expose more parameters, enabling increasingly varied
version of Friends & Foes to be made on-device.

One straightforward extension was to allow friends/foes
to stick in place after having been in contact with the im-
age for a certain length of time (another parameter). This
gives more sense of progress to the game: once a friend
or foe is stuck, it cannot be batted away. Interestingly the
game with sticking is still recognisably Friends & Foes, but
is also recognisably different. This simple change expanded
Friends & Foes into a space of two types of games: one with
sticking and one without. There are also interesting points at
the edges of the parameter space, e.g., if the sticking time is
set to zero, balls stick to the image instantly, and the whole
strategy of the game changes: foes can no longer be batted
away with the image itself, so the player must build a barrier
of stuck friends and use that to bat the foes away instead.

To expand the space of games further, we looked at what
other aspects of the game could be parameterised, starting
with scoring and game ending conditions. In the original
game, friends on screen are worth 1 point and foes worth
-1, but we extended this to enable scoring when balls stick
or are batted away. Also, originally the game ended when
the timer ticked down to zero, but we added a parameter to
enable the game to end when a certain score was reached,
or when a certain number of balls are stuck. We also added
conditions for winning or losing based on timing, number of
stuck friends/foes and scores. We continued to challenge our
assumptions about what aspects of Friends & Foes should
be hard-coded and what should be parameterised, e.g., when
two balls collide, they were hard-coded to bounce off each
other, but we changed that to enable them to stick to each
other, and to explode, with a new parameter. Moreover, we
enabled collisions to feed into the scoring system, e.g., when
a cluster of a certain size forms all balls in the cluster ex-
plode, gaining or losing points (reminiscent of the ubiqui-
tous match-3 genre of games). Points could also be awarded
or deducted for batting balls off screen, and we added a pa-
rameter for the scoring zones.

At this stage, we determined that all of the games in the
expanded space were still too recognisable as Friends &
Foes, and the casual creator felt like it afforded only ver-
sions/levels/variations of this. To greatly increase the range
of games, we employed two main tactics. Firstly, we identi-
fied some inspiring examples as described in (Colton, Pease,
and Ritchie 2001), namely some classic casual arcade games
that we felt should be in the space of games achievable with
Gamika. These included Frogger, Space Invaders and As-

teroids. We then determined which parameters would be
needed in order for the space of games to include these ex-
amples. Secondly, we looked at the underlying physics en-
gine and lighting rendering system available in iOS through
the SpriteKit interface, and exposed parameters which were
afforded by the methods and fields there.

We also added parameters in ad-hoc ways, including: a
systematic search through code to see if any hard-coded val-
ues could be extracted; engaging in what-if ideation to imag-
ine different game mechanics; and adding a parameter in or-
der to turn a bug into a feature, or to balance the usage of
a different parameter. We describe these sources in general
terms when presenting the design methodology below. Note
that, in exposing more parameters, we often came up against
certain computational limits, so we sometimes restricted the
parameter ranges to make it less likely that users could de-
sign games with unacceptably low frame rates.

The Set of Parameters in Gamika

After much development, when the parameter-exposing ex-
ercise was completed, we had identified and exposed 284
parameters to the user interface for game design. With these
parameters, the space of games afforded was sufficiently
large to cover radically different games such as four-in-a-
row puzzles, bullet hell games and clones of our inspiring
examples. Note that one of the computational constraints we
imposed was having only two sets of physics objects with a
fixed maximum number of each allowed. This did allow us,
however, to continue to describe on-screen objects as friends
and foes, with the term ‘controller’ describing the evolution-
ary art object which the player controls.

The 284 parameters identified for Gamika can be grouped
into several categories as follows.

® Properties of friends/foes, including their size; shape;
colour; sprite image; bounciness, mass and damping.

® Lighting effects applied to the background and game ob-
jects, controlling: spotlights; ambient light; the calculation
of normal maps; and the lit appearance of the friend/foes.

® Spawning regimes for the friends/foes. These set: the
spawning positions within time-varying ranges; spawn fre-
quencies; total number of each object allowed on-screen;
and spatial constraints, such as min/max distances from each
other when spawned and spawning on a grid.

® Movements of friend/foes, both initially and during a
game, via forcefield directions and strengths with parame-
ters for: noise; friction and angular/linear drag; speed lim-
its; whether objects can rotate or not; and how joints such as
pins, springs and sliders act on the objects.

® Collisions between friends/foes and controller: whether
pairs of friend/foe stick, bounce, explode and/or change
types on collisions, and timings for these; which screen sides
have walls, and how bouncy they and the controller are; and
how clusters of friends/foes form and explode.

® Player interactions with the controller and friends/foes:
tapping, dragging and swiping actions; how the controller
is attached by springs, pins and sliders, and can be subject
to movement and/or rotation by player touches; tapping to

explode, halt, reverse or change the type of the friends/foes;
taps on the background spawning more objects.

® Progress calculations altering three counters: score,
health and lives, via calculations which add up to five mea-
sures prescribed by events on friends/foes, which include
collisions; explosions; spawning; staying on screen; clusters
forming; and objects entering scoring regions.

® End-game criteria which dictate how progress calcula-
tions and/or game duration terminate the game, which set:
what constitutes a win or loss; how the final overall score is
calculated; and whether high-scores are recorded.

The Cillr Design App

As mentioned above, Cillr was the initial game design inter-
face to Gamika Technologies, an i0OS application that en-
ables users to navigate the entire space of games by set-
ting the values for the 284 parameters described above.
It was supplemented with additional design screens to (a)
save/load games (b) randomly mutate aspects of the game
genomes (represented simply as a list of the parameter val-
ues) (c) make drawings which get turned into live physics
objects, and (d) browse thumbnails of available evolution-
ary art pieces. Four design screens from Cillr are shown in
figure 1, along with some screenshots of example games.

Each parameter in Cillr is assigned a slider in the UI, and
these are distributed over screens — which can be scrolled
between — with a manageable number on each. In par-
ticular, the sliders are grouped into categories with re-
lated functionalities to make them more discoverable (the
spawning-related sliders are collated, the collision-related
sliders likewise, etc.). Even with these groupings, however,
we found that having 284 parameters was unwieldy, as even
expert users had trouble simply finding the right parameter
to change, and it wasn’t always clear why a game hadn’t
changed as expected. We experimented with enabling users
to navigate the game space in an evolutionary way, with
a screen performing focused random mutations of games.
Producing a random game variant, then trying to figure out
what it is, can be a fun interaction loop. However, we found
that the proportion of playable games produced in this man-
ner was too low to consider it for end-user consumption.

As an initial baseline, Cillr is usable, at least by experts.
We have used the interface to produce clones of classic
games like Frogger, Asteroids and Space Invaders, as well as
a variety of novel casual games. Often, we have found that
such novel games emerge during design, often in response
to unforeseen physical interactions of objects. We investi-
gated such emergence with a narrated set of design sessions,
as reported in (Colton et al. 2016). Moreover, in a prelim-
inary user test with game-design undergraduate students to
test whether Cillr could be used as-is, we found them some-
what frustrated by the experience of using it to make games.
Interface complexity was one issue, but more importantly,
the difficulty of understanding the high-dimensional design
space made it hard for these initial testers to grasp what they
wanted to do in the app, and how they would begin to do it.
Therefore, rather than focusing on improving Cillr’s inter-
face, we resigned it to an in-house tool. For public release,

Figure 1: Four Gamika games (left) designed with the Cillr
app (UI on right). Cillr design screens clockwise from top
left: List of editable saved games, a screen of movement-
related sliders, brainstorming wheel to randomise subsets of
parameters, and drawing interface to edit controllers.

we have focused on producing design tools for more cohe-
sive subspaces of parameterised games, as described next.

Fluidic Game Design Apps

With the term fluidic game, we mean a casual game for
which it is very quick and easy to change any aspect of the
design, to improve it, make it easier or more difficult, pro-
duce a new level/variation or generally explore possibilities
and have fun being creative. As such, an individual fluidic
game is itself a design tool, enabling players to search for
games, rather than a fixed game in the space. We wanted
to blur the line between designing and playing a game, so
that it becomes natural for people to change games as they
play them, hopefully demystifying and popularising game
design, similarly to how level design in games such as Little
Big Planet or scene building in Minecraft provide gateways
to game design. Hence we give each fluidic game its own
user interface, rather than sharing a global one — so that the
UI feels like an integral part of the game. In the subsections
below, we describe three fluidic game design apps, which
are collections of parametric fluidic games in a single i0S
application, with associated administrative screens, e.g., for
collating and sharing games, changing global settings, etc.
In order for it to be as much fun to make fluidic games
as to play them, we designed their user interfaces as casual
creators, often sacrificing parameters which would increase
the space of games to maintain a fun design experience. De-
spite all being 2D physics-based games, the Gamika space is
heterogeneous, with some games puzzle-like, others medita-
tive, and others fast action. Sometimes, changing a param-
eter will design a slight variant of a game, but sometimes
it completely changes the game genre, or could break it.
We decided that a fluidic game, by contrast, should encom-
pass a smaller parametric design space that (a) can be nav-
igated more deliberately, with understandable relationships
between parameter changes and changes in gameplay be-
haviour (b) retains emergent properties, so that unexpected

()
e
()
()
{]
[)
L]
()
()
()
(]
()
O ()
O ()
()

Figure 2: No Second Chance gameplay (left) and example
design screen (right) for changing the ball sizes.

games can be found, and (c) minimises or eradicates the pos-
sibility of producing a broken or slow game.

Having identified a design subspace, it then becomes im-
portant to understand the structure of the space well enough
to build a casual creator interface that enables designers to
control the space’s salient features. In the first two fluidic
game design apps described below, the parameters shaping
the design space are subsets of those of Gamika, previously
described in some detail in (Nelson et al. 2017a). In the
third app, new parameters have been derived. In each case,
the procedure for defining the space of games is based on
first cutting down a large set of parameters to a rather small
subset, then expanding the set again around the core of a
specific type of game. When the expansion happens, this
is in close interplay with an interface specific to the genre
of game covered by the space. This is followed again by
another round of contraction based on user testing with the
interface, if this shows that the interface is too complex.

No Second Chance

Using Cillr, we designed a game of patience and concentra-
tion called Pendulands, where balls (friends/foes) move in
a pendulum-type motion and annihilate each other on colli-
sion. Players catch balls by hovering under them with a large
round target (controller) until they stick. By varying param-
eters, we discovered that many quite different Pendulands
variants could be created. We decided on some fixed ele-
ments defining this subspace of Gamika games: the player
always controls the target by dragging, and must catch five
balls on the target within five minutes. No Second Chance
is an app built around this space of games. The name comes
from a meta-game mechanic: players can share games which
are deleted if the receiver doesn’t beat the game on the first
try (in five minutes). This emphasises the “disposable” na-
ture of games in a generative space, and the challenging na-
ture of figuring out how each one works on first encounter.
The game design screen (see figure 2) is laid out as a hi-
erarchical menu, with submenus allowing visual style and a
variety of physics parameters to be changed. As the control
and scoring mechanisms are fixed for No Second Chance

games, new ones are made by varying the nature of move-
ments, collisions and spawning, in addition to visual aesthet-
ics and a soundtrack. Within these constraints, very different
types of challenging games can be created. In particular, we
found that games requiring gameplay with various levels of
skill (chasing after balls), ingenuity (working out what is go-
ing on) and patience (waiting for exactly the right moment)
were possible. To demonstrate the variety of games that can
be produced (and to provide an initial challenge), the app
comes with 100 preset games designed using this interface.
To supplement the design interface, we added a ‘gener-
ate’ button, which creates a new game via an evolutionary
process. In particular, groups of related parameter settings
(e.g., all those for lighting, or movements) from two of the
preset games are crossed over and the resulting offspring is
mutated. The resulting games are filtered using heuristics
to reject clearly bad candidates, and the first four candi-
dates that pass the filter are auto-playtested at super-speed
on the device in a split-screen view. As we want games to
be playable but not too easy, the app chooses the game that
the playtester was able to catch the most balls on, without
being able to catch all five. No Second Chance has been
tested successfully for game design in an after-school club
for 12 year olds, and in rapid game jams (Gaudl et al. 2018).

Wevva

Again using Cillr, we made a relatively addictive four-in-
a-row game called Let It Snow, where snow and rain pour
down from the top of the screen (as white and blue balls re-
spectively). When four or more white balls cluster together,
they explode and the player gains a point for each, which
are then replaced by new ones spawned at the top. Likewise
with blue balls, except that the player loses points for them.
Players can interact with the game by tapping blue balls to
explode them, losing one point in doing so. A grid structure
collects the balls into bins, and the best way to play the game
involves trapping the blue balls in groups of twos and threes
at the bottom, while the whites are exposed above and are
continually refreshed through cluster explosions. Occasion-
ally, when all blues are trapped in small clusters, only whites
spawn, which looks like snowing (hence the game’s name)
and is a particularly pleasing moment.

From this single game as a starting point, we first ex-
panded to a larger but still relatively small design space of
similar winter-themed puzzle games. These were collected
into an app called Snowfull, with a fluidic interface allowing
designers to change the rain and snow cluster sizes, what
happens when the player taps, and the win conditions. A
major interface difference from No Second Chance was that,
given the reduced parameter space, we were able to show a
visual overview of all selected parameter values on a single
screen, used as (a) an instruction screen for each game, ex-
plaining the rules, win conditions, and interaction methods,
and (b) the starting point for editing the game.

We conducted a series of 1 to 2 hour rapid game jams
using Snowfull, with groups from Girlguiding Cornwall
(Gaudl et al. 2018). They were able to design games, but
gave mixed feedback: despite the casual look-and-feel, the
design is oriented towards challenging puzzle-like games,

-
A Gamedesign .55

bounce: 8

Rotating Rigid
)

PLAY

Figure 3: Wevva, showing the overview design screen and a
sub-design screen for character movements.

requiring finding a carefully balanced interplay of mechan-
ics that both provide challenge and allow for strategies to
overcome those challenges. We found that a large propor-
tion of the participants wanted to make much more casual
games, and also felt constrained by wintry theme and the
relatively small number of parameters available to change,
with game mechanics limited to clustering interaction.

Based on feedback like this, Snowfull gradually evolved
into a fluidic game called Wevva, described in (Powley et
al. 2017). While it has many more parameters for game de-
sign than Snowfull, it is in some ways more causal to design
with, and games are certainly more casual to play, although
it is still possible to make them challenging. Among other
changes, we returned to the idea from No Second Chance
of the player controlling an in-game object (their avatar of
sorts), and also added a number of ways to change sprites,
backgrounds and music/audio.

Although we significantly expanded the parameter space,
we decided it was important that all selected parameters
would be shown in a single-panel visual overview, as por-
trayed in figure 3 (left). Going row-by-row from top left,
the nine grid squares show: character options; what tapping
does; physics parameters for character movements; effects
of collisions between the avatar and other characters; ef-
fects of collisions between non-player characters; music pa-
rameters; player avatar look/position, interaction and back-
ground; spawning and scoring zones; and win/loss condi-
tions. The constraint that the value of every changeable
parameter needed to be represented in this screen was a
continual presence in discussions of which parameters to
add/remove to expand/contract the space.

Not counting audio design, which is a more advanced
topic (as volumes and tempos for five tracks can be set),
there are 33 design screens enabling the setting of 47 pa-
rameters. We have found that this number seems manage-
able for most users, and the UI enables rapid progression
and a comprehensible, satisfying, design experience. This
is achieved through a sensible collection of parameters on
screens through which there is a logical progression which
rarely gets too far from the home screen. The variety of

@ Home
\Gmatds 17 e areigre |

% Home

%

odes:331 60.0 fps

Figure 4: Blasta, showing the home design screen, a sub-
design screen for alien characters, and a game.

games is evidenced by Wevva shipping (on the iOS app
store') with 28 games in four different game packs (sim-
ple, fast, skilful and tricky). In each of around 15 game jams
with Wevva, we have always seen a few genuinely new game
mechanics found (and hence novel games). In the most re-
cent tests of Wevva, we found that secondary school children
were able to make novel games in around 15 minutes, with
zero preparation and no in-game help.

Blasta

A new fluidic game design app called Ludando is currently
being developed by the first author as a commercial devel-
opment for Imaginative Al Ltd. With this app, players will
be able to design different types of games including ones in
the Blasta genre, which covers certain types of shoot-em-
ups and driving games. The fluidic games differ to those in
Wevva in a number of ways. Firstly, multiple phases (like
levels) can be defined for a single genome, so that games
can have long gameplay durations, measuring in hours to
complete a game. In the design screen, a new phase is con-
structed by copying the parameters of the previous phase, so
it is easy to increase difficulty from level to level. Secondly,
the designer can use their own content, namely photographs
and audio files in the game. Thirdly, although Blasta games
differ somewhat by game mechanic, this is not as empha-
sised as in Wevva, and the parameters are instead used to
highly fine-tune and personalise the look and feel of stan-
dard shoot-em-up games (which have norms and expecta-
tions), rather than discovering brand new casual games.
Screenshots of the design Ul and an example game are
given in figure 4. We see that the home screen breaks down
the game design into three main character types (starship,
alienl and alien2) and has design screens for the control

"https://itunes.apple.com/gb/app/wevva/id1322519841

mechanisms, the events and the game style. For the two
alien types, the sprite and movement patterns for both lead-
ers and wingers can be set, as can parameters for weapons
and shields. For the starship, lives, shields and weapons are
parameterised, and settings for how the player controls it
(by dragging directly, tapping in a desired location or driv-
ing it like a car) are also exposed. Style parameters enable
the user to set game aspects including backgrounds, terrain,
music, animations and the heads-up display.

At the current stage of development, the app has too many
parameters, and the interface is useable but somewhat daunt-
ing (as per some initial user testing). We are currently re-
ducing the number of parameters, thus limiting the space
of games, in order to improve usability of the design inter-
face. Blasta was originally intended to cover stealth games,
infinite runners and possibly even platform games, in addi-
tion to shoot-em-ups and driving games. However, the pa-
rameters for these extra genres have been dropped, as the
space was too large and the design interface had become un-
wieldy (much like Gamika). It is likely that some level of
homogenisation of aspects like bullets (which can be altered
in detail) is still required, and we plan to give designers col-
lections of parameters, e.g., for movement formations, rather
than access to the parameters themselves. After the contract-
ing stage, we will undertake substantial play-testing of the
app, which will inform more expansion and contraction.

Constructing Parametric Design Spaces

Based on our experiences designing Gamika/Cillr and the
three fluidic game design apps above, we have abstracted
out a general methodology for building parametric design
spaces specifically for use in casual creators. The method-
ology consists of two parts: (i) sourcing a set of parameters,
and (ii) deciding how and when to add or remove parame-
ters, which we suggest can be achieved iteratively through
expansion and contraction cycles. Dealing first with the
sourcing of parameters, looking systematically at why each
parameter in Gamika and the fluidic games was introduced,
we have identified the following seven sources:

1. Capture an initial example: Choose one game to imple-
ment, and identify the minimum set of parameters needed to
represent that game. At the beginning of the Gamika project,
we started with a simple game called Friends & Foes, which
necessitated some obvious initial parameters, e.g., to capture
spawning, speeds, etc.

2. Externalise fixed parameters: Systematically investi-
gate values that were hard-coded when implementing the
first game — e.g., constants in the source code — and turn
appropriate ones into parameters of the design space.

3. Capture an inspiring example: Think of a game that
seems possible to express in the current space, and if it
isn’t, add new parameters to expand the space until either
that game, or something like it, is included. For example,
in Gamika we expanded the space in an attempt to capture
Frogger-like games. We didn’t end up with precisely Frog-
ger, but the exercise helped us identify a number of new
parameters that made sense to add to the design space, and
we ended up with Frogger-like games in the space.

4. Pass through parameters from underlying technology:
Study the fields and input parameters to methods available
within the APIs available in the programming environment
being used, and expose suitable ones as parameters in the
design space. For example, Gamika is built on the i0S
SpriteKit in which physics objects have a field called resti-
tution, which we just passed through directly as bounciness.
These are exploratory parameters: in contrast to those added
to capture a specific example, they’re added opportunisti-
cally to see what new possibilities they might enable.

5. Balance other parameters: If it becomes clear that hav-
ing parameterised a game setting X, you really needed to be
able to change Y too, then add the extra parameter. For ex-
ample, in Gamika, we added the ability for objects of the
same type to stick to each other, and to explode once a clus-
ter of a certain size was formed. We then realised that we
should provide similar functionality for heterogeneous clus-
ters; i.e., clusters of both friends and foes. Identifying bal-
ancing parameters can be done systematically post-hoc.

6. Reify emergent features: When experimenting with a
parameterised design space, combinations of features often
produce novel emergent effects. It may be possible to make
an emergent property available in a game, and parameters
for turning it on/off and altering it can be added. Doing so
makes them easier to use, as the user is now aware that such
effects are possible and can control them directly.

7. Split parameters: An existing parameter may be em-
ployed for more than one aspect of the game design due to
bundling things together in the code, and it may be possi-
ble to split out parameters for each aspect. For example, an
initial implementation may have a single lighting parame-
ters which controls the overall light level. Later, this could
be split into multiple parameters, such as controlling diffuse
and specular lighting separately.

The fourth source of parameters above is the one closest
to much of the work on parametric design in graphics and
architecture, but in our experience, it accounts for only a mi-
nority of the parameters required to specify a casual game.

Given these various ways to identify parameters, the other
important feature of our proposed design methodology for
parameterised design spaces is when and how to introduce
or remove the parameters. In retrospect, we can characterise
the development of fluidic games (as a form of casual cre-
ator) as involving a series of parameter expansions and con-
tractions, carried out in the following four stages:

® Stage 1: unconstrained expansion. First add a large num-
ber of parameters, sourced via all seven methods above, to
map out as general a space as is feasible. In our case, this
is described above in how we arrived at the parameter space
for Gamika. This produces an initial parameterised design
space containing a large number of highly varied games, but
one that is likely to be too large and heterogenous to be a
good basis for a casual creator.

® Stage 2: radically cut down the parameter space to just
enough to encapsulate a single example game. Choosing
one promising game within a large game space enables the
building of a bare-bones casual creator Ul for designing vari-

ants of that game. For No Second Chance and Wevva, we cut
down the parameters in Gamika to those required just for the
initial games, respectively Pendulands and Let it Snow.

® Stage 3: Ul-constrained expansion. Initial playtests will
likely find that users feel constrained by the small design
space and will want to modify more game aspects than those
available in the bare-bones interface. At this point, parame-
ters can be re-added to meet user requests, but with a strong
constraint from the Ul: every new parameter must at the
same time fit cleanly into the UI, keeping the resulting in-
terface fun to use, as per the notion of a casual creator. In
several cases, we chose very specific Ul constraints to fur-
ther structure this process. For instance, in Wevva, the 3x3
grid structure for the design interface, and the requirement
that all parameter values be readable on the top-level screen,
strongly guided how we added new parameters.

® Stage 4: consolidation and polishing. Even though Stage
3 only adds parameters under a strong constraint of fitting
them into the Ul, it is possible that the resulting UI may still
become over-complicated. Itis also likely that the incremen-
tal addition process may have resulted in parts of the UI be-
ing somewhat inconsisetnt. At this point, relatively modest
streamlining can be done by consolidating or linking similar
parameters, rethinking arrangements, etc., in preparation for
a final version of the casual creator.

Conclusions and Future Work

We have proposed a methodology for specifying param-
eterised design spaces for casual creators, derived from
our experiences in developing three casual creator apps for
broadly accessible game design. Our method includes seven
sources of the parameters themselves, and a four-stage pro-
cess of expansion and contraction of the parameter space —
initially as a relatively unconstrained design of parameters
in the abstract, and later in tight interplay with the design
of a casual-creator user interface. We were surprised to find
that, although there is a large literature on parameterised de-
sign, there is little written about how to specify the parame-
ter spaces themselves, which is obviously key to the process.
Therefore, we believe a methodology such as the one here is
a useful contribution and may be of benefit to casual creator
designers. In future work, we would like to understand how
general such a methodology is when applied to other types
of casual creators, and to extend the methodology with more
automated methods of parameterisation.

This methodology currently focuses on discrete design
decisions, such as spawn rate or collision response. In some
cases, we might additionally want high-level design param-
eters that impact many lower-level design decisions. Such
parameters are common in generative machine-learning sys-
tems. For example, Microsoft’s SongSmith musical accom-
paniment system both data-mines parameters from a cor-
pus and makes a virtue of the hyperparameters required by
machine-learning models by exposing them as well (Simon,
Morris, and Basu 2008) — for example, Markov-model tran-
sition weight was made a parameter and dubbed the “jazz
factor”. Similar high-level parameters could be used in flu-
idic games for complex assets such as music, sound effects,

and visuals, for which users often want broad stylistic con-
trol. We plan to add such high-level parameters to Blasta.

An alternative way to support high-level design-space
navigation is to allow users to link together parameters with
constraints. This is perhaps the primary feature of paramet-
ric design in architectural CAD tools (Motta and Zdrahal
1996; Woodbury 2010), which allow users to specify, for
example, that a component must be twice as long as tall.
The user can then resize the component without having to
keep linked quantities in sync. Although designing a casual-
creator interface for constraint editing would be challenging,
giving users a way to accumulate constraints would allow
them to navigate large parameter spaces more efficiently.

As a contribution to Computational Creativity, casual cre-
ators add an extra constraint on the design of parameter
spaces by requiring that human users of creativity support
tools must be able to navigate the parameter space and en-
joy doing so. The methodology presented here helps with
this tension between supporting breadth of creative expres-
sion and designing intuitive, fun interfaces. The main way it
does so is by requiring the final parameterised design space
to be built up in tandem with a casual-creator interface for
navigating it. This process, dubbed Stage 3 above, ensures
that the parameter space meshes nicely with the UI for navi-
gating it. Theory-based constraints on interface design could
also be enforced at this stage, such as limits on the cognitive
concurrency of design actions (Kavakli and Gero 2002).

In future work, we plan to look at the Computational Cre-
ativity literature to identify further sources for parameter ex-
traction. We note that the first three sources above have some
relationship to the descriptive IDEA model (Colton, Charn-
ley, and Pease 2011). The IDEA model describes a computa-
tionally creative system able to capture inspiring examples,
and then fine-tuning to generalise from them, as the first two
stages of developing a creative system; for us here, those are
the first two sources of parameters for enabling human cre-
ativity in a design space. In addition, the iterative expansion
and contraction of a design space bears some resemblance to
work on design-space ‘sculpting’ (Smith and Mateas 2011).

When engineering software for autonomous creativity,
many Computational Creativity researchers, including our-
selves, have specified a parameterised space of artefacts and
enabled software to intelligently search the space. Hence, in
addition to usage for implementing creativity support tools,
we believe the methodology presented here might have
broader usage across Computational Creativity research. We
have experimented somewhat, but not yet fully investigated
how automated techniques could take advantage of fluidic
game spaces to make interesting games. We also plan to ex-
plore the possibilities for automatic use of the methodology
here, i.e., getting software to create at the meta-level by au-
tomatically specifying a parametric design space for creative
systems, which we believe would represent a major step for-
ward for Computational Creativity systems.

Acknowledgements

This work is funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities). We would like to thank the
anonymous reviewers for their helpful comments.

References

Browne, C., and Maire, F. 2010. Evolutionary game design. /[EEE
Trans. Comp. Intelligence and Al in Games 2(1).

Colton, S.; Nelson, M. J.; Saunders, R.; Powley, E. J.; Gaudl, S. E.;
and Cook, M. 2016. Towards a computational reading of emer-
gence in experimental game design. In Proceedings of the 2nd
ICCC Computational Creativity and Games Workshop.

Colton, S.; Charnley, J.; and Pease, A. 2011. Computational cre-
ativity theory: The FACE and IDEA descriptive models. In Proc.
of the 2nd International Conference on Computational Creativity.
Colton, S.; Cook, M.; and Raad, A. 2011. Ludic considerations of
tablet-based evo-art. In Proceedings of the EvoMusArt Workshop.
Colton, S.; Pease, A.; and Ritchie, G. 2001. The effect of input
knowledge on creativity. In Proceedings of the ICCBR’01 Work-
shop on Creative Systems.

Compton, K., and Mateas, M. 2015. Casual creators. In Proc. of
the 6th International Conference on Computational Creativity.
Coons, S. A. 1967. Surfaces for computer-aided design of space
forms. Technical Report TR-41, MIT.

Gaudl, S. E.; Nelson, M. J.; Colton, S.; et al. 2017. Exploring
novel game spaces with fluidic games. In Proceedings of the AISB
Symposium on Al and Games.

Gaudl, S. E.; Nelson, M. J.; Colton, S.; et al. 2018. Rapid game
jams with fluidic games: A user study and design methodology.
Entertainment Computing 27.

Kavakli, M., and Gero, J. S. 2002. The structure of concurrent
cognitive actions: A case study on novice and expert designers.
Design Studies 23(1).

Motta, E., and Zdrahal, Z. 1996. Parametric design problem solv-
ing. In Proc. of the Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop.

Nelson, M. J.; Colton, S.; Powley, E. J.; et al. 2017a. Mixed-
initiative approaches to on-device mobile game design. In Proc. of
the CHI 2017 Workshop on Mixed-Initiative Creative Interfaces.
Nelson, M. J.; Gaudl, S. E.; Colton, S.; et al. 2017b. Fluidic
games in cultural contexts. In Proceedings of the 7th International
Conference on Computational Creativity.

Pérez Ferrer, B.; Colton, S.; Powley, E.; et al. 2016. Gamika: Art
based game design. Art/Games 1.

Piegl, L. 1991. On NURBS: A survey. IEEE Computer Graphics
and Applications 11(1).

Powley, E. I.; Nelson, M. J.; Gaudl, S. E.; et al. 2017. Wevva:
Democratising game design. In Proceedings of the Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Schaul, T. 2014. An extensible description language for video
games. [EEE Trans. Comp. Intelligence and Al in Games 6(4).
Simon, I.; Morris, D.; and Basu, S. 2008. MySong: Automatic
accompaniment generation for vocal melodies. In Proc. CHI.
Smith, A. M., and Mateas, M. 2011. Answer set programming
for procedural content generation: A design space approach. /[EEE
Trans. Comp. Intelligence and Al in Games 3(3).

Stanley, K. O. 2007. Compositional pattern producing networks:
A novel abstraction of development. Genetic Programming and
Evolvable Machines 8(2).

Woodbury, R. F. 2010. Elements of Parametric Design. Routledge.

Woodbury, R. F., and Burrow, A. L. 2006a. A typology of design
space explorers. Al EDAM 20(2).

Woodbury, R. F.,, and Burrow, A. L. 2006b. Whither design space?
Al EDAM 20(2).

