Redesigning Computationally Creative Systems For Continuous Creation

Michael Cook! and Simon Colton"?
IThe MetaMakers Institute, Falmouth University, UK
2Computational Creativity Group, Goldsmiths, University of London, UK

www.metamakersinstitute.com

Abstract

Most systems developed for Computational Creativity
projects are run for short periods of time, which pro-
vides enough space to be creative, but limits the long-
term growth and development of software both inter-
nally and in the wider world. In this paper, we describe
the notion of continuous creativity by describing how
ANGELINA, an automated game designer, was rebuilt
to be an ‘always-on’ system. We review the history of
ANGELINA and contrast this new approach with earlier
versions. We introduce the term presence to describe
the impact a computationally creative system has on its
environment, and vice versa, and discuss how contin-
uous creativity can contribute to a system’s presence,
providing greater creative independence, opportunities
for framing, and space for the system to grow.

Introduction

Automated game design is a frontier challenge for Compu-
tational Creativity research. Composing music, writing sto-
ries, conceptualising visual aesthetics, inventing systems of
rules — designing a videogame involves solving many dis-
tinct creative problems, and ensuring all of those solutions
pull together towards the same ultimate goal. (Liapis, Yan-
nakakis, and Togelius 2014) describes videogames as the
‘killer app’ for Computational Creativity, as they offer not
only a variety of creative challenges, but also additional
problems of co-operation and integration between creative
tasks and potentially between different creative individuals.
ANGELINA is an automated game design project which
has been developed, over several iterations, to explore ideas
relating to Computational Creativity. The project’s aim has
been twofold: to solve the hard, technical problems of devel-
oping software capable of designing games automatically;
and to investigate the social and cultural aspects of game de-
sign and try and understand how, if at all, an Al system can
take on a role in this space. As a result, our work on AN-
GELINA encompasses studies of evolutionary computation
and code synthesis, as well as user studies, exhibitions, and
evaluating the cultural impact of the software. Each version
of ANGELINA is designed to focus on a particular subprob-
lem within automated game design, but shares a common
core structure and engineering approach (Cook 2015).
Rebuilding and reassessing the system over the course of

ccg.doc.gold.ac.uk

many years allowed us to refocus the project on new prob-
lems, as well as embrace emerging technology and new plat-
forms. However, it also led to a lack of continuity between
the different versions of ANGELINA, and had a negative im-
pact on the perception of the system as a long-term creative
entity. Observers found it hard to make sense of a system
which changed so often, and ANGELINA had little persis-
tence outside of a single creative act. Reflecting on these
issues, we designed and built a new version of ANGELINA,
with an emphasis on long-term creative existence. We called
this new approach continuous automated game design, or
CAGD, but more generally it expresses an approach to com-
putational creativity we are calling continuous creativity.

In this paper, we discuss the process of redesigning AN-
GELINA in the continuous creativity paradigm. We begin
by giving an overview of the history of the project and dis-
cuss its limitations, introducing the concept of presence to
describe the aggregated long-term legacy of a computation-
ally creative system. We then outline the new structure of
ANGELINA, explaining the changes necessitated by a shift
to continuous creativity. Finally, we place this new version
of ANGELINA in the context of related automated game
design research, and then discuss future work. The rest of
the paper is organised as follows: in Background we cover
the history of ANGELINA as a project; in Presence In CC
Systems we critically reflect on the project and introduce the
notion of presence; in Designing For Presence we describe
the new ANGELINA, focusing on how the structure of the
system has changed in response to the demands of contin-
uous creativity; in Discussion and Future Work we discuss
the potential problems and new directions exposed by con-
tinuous creativity; in Related Work we place ANGELINA in
the context of automated game design research.

Background

ANGELINA is an automated game design system, and has
been in development in some form since 2011, first pre-
sented at ICCC in 2013 (Cook, Colton, and Gow 2013). Al-
though version numbering is somewhat obscured by project
forks and anonymised systems, there are five distinct his-
torical versions of ANGELINA, each with a different fo-
cus, but their broad structure remains the same across most
versions. In this section we give a brief overview of the
structure of the software, and then dissect some of its short-

comings. We also provide an overview of related work in
terms of automated game design and computationally cre-
ative systems. Throughout this paper we occasionally refer
to a specific version of ANGELINA with a subscript like
this: ANGELINA ;. For a discussion of ANGELINA’s vari-
ous versions to date, see (Cook, Colton, and Gow 2017).

Each version of ANGELINA can be thought of as running
through three distinct phases: predesign, design and postde-
sign, as described below.

Predesign

The system begins in a predesign phase. For early versions
of the software this predesign phase was almost nonexistent,
simply loading in parameters, but for later versions of the
software this is where it would lay the foundation for the
design problem it was about to tackle. ANGELINAj; read
online newspaper articles to decide on an inspiring article to
make a game about, and would then search for online media
like images and sound effects to use in its game design. In
ANGELINA;, the system was provided with a short phrase
or single word before running, and broke the input down
using online concept and word association databases.

Predesign was a flexible space which we could use to
add in new functionality during the setup for the system.
Because the design phase which follows it cannot be in-
terrupted until it is finished, the predesign phase was the
only way for the system to make creative decisions before
work on the game began. Any expansion to ANGELINA’s
creative capacity typically had to fit into this phase some-
how: for example, the system was later given the ability to
scrape social media to assess how people felt about a par-
ticular notable figure, which then became a parameter that
influenced other media searches. This easily fitted in to the
predesign phase, because it ultimately only affected the me-
dia that would be fed into the design phase. However, we
were unable to expand the system in more complex ways
— responding to a serendipitous discovery while designing
the game by going back and searching for more information
online, for instance.

Design
The design phase is the largest and most important part of
the system. All major versions of ANGELINA employ the
same technique in this process, namely cooperative coevo-
lution (Potter and Jong 1994). Unlike a normal evolutionary
system, where a single population of solutions is evaluated
and recombined until termination, a cooperative coevolu-
tionary system is composed of several separate evolutionary
subsystems solving their own part of a larger problem, in this
case designing a game. When an evolutionary subsystem
evaluates its population, instead of evaluating it in isolation
it uses high-ranking exemplars from the other subsystems
to synthesise a larger artefact, in this case a game, and then
evaluates that larger artefact instead. Thus, the fitness of a
population member is not just based on local evaluation, but
on evaluation in the context of a larger solution.

Different versions of ANGELINA were built to break the
game design process down into different kinds of subsys-
tem — ANGELINA; had Level Design, Layout Design and

Ruleset Design, for instance. Our intention was to repli-
cate the way a small game developer might distribute the
creative task of game development, where level designers,
musicians, writers and so on would work independently, but
share their work together to evaluate their progress towards
a common goal. Another desirable feature this technique
had was being omnidirectional. In many generative systems
there is a clear line of steps that the software always moves
through, in the same order. A cooperative coevolutionary
system does not work in this way, because all parts of the
artefact are being evolved simultaneously. If, for example,
the Level Design subsystem struck on a particularly good
design, this could influence the fitness landscape of the other
subsystems.

Postdesign

After the design phase has concluded and the game is not
going to be changed further, we enter the postdesign phase.
The most important part of this phase is compiling the game
— in many cases, ANGELINA would not create an exe-
cutable when it was finished. ANGELINA, modified Ac-
tionscript files and then ran a compiler to produce a game,
while ANGELINAj5 required the manual moving and ar-
rangement of files so it could be compiled into a finished
binary executable. Although this may sound like a minor
aspect of the system compared to coevolutionary systems
and creative evaluation, the requirement for the intervention
of a person is a major weakness, both from the perspective
of the perception of observers, and the autonomy and inde-
pendence of the system. We believe that it is crucial that
the system can release its work on its own, so it can control
how and when it disseminates its work. This is a big part of
‘closing the loop’ creatively — allowing the system to decide
when it is finished.

Another aspect of postdesign was the preparation and
compilation of framing information (Charnley, Pease, and
Colton 2014). Across all versions which employed fram-
ing this took the form of textual commentaries, which AN-
GELINA would construct using templates filled with data
about decisions made by the system. Because of the dense
nature of the design phase, the framing information never
referenced the development of the game itself — instead, it
discussed intentions and motivations, and the origins of the
media used in the games. The main reason for this was that
it was hard to convey meaningful things about the design
phase because players never knew what it was or what took
place in it, they only ever saw the finished game. Almost
everyone we spoke to asked about the design process itself,
highlighting how little we communicated about it.

Presence In CC Systems

ANGELINA began as an abstract system with little em-
phasis on creative decision-making, and evolved over time
to take into account issues like real-world context, self-
evaluation, and framing. However, this did not change the
fundamental structure of the system, or the Al techniques it
used to achieve its goals, and this caused problems as the
project developed. In this section, we highlight some of the

most common issues we identified in the design and execu-
tion of ANGELINA, and then introduce a common thread
which ties them together: the concept of presence in a com-
putationally creative system.

Opacity Of The Design Phase

A working definition of Computational Creativity makes
reference to ‘unbiased observers’ who assess software as
being creative or not based on how it behaves (Colton and
Wiggins 2012). The most important aspect of ANGELINA’s
process, where the game is actually designed, was not only
impossible to observe, but would also be impossible for
many to understand even if they could observe it (Cook,
Colton, and Gow 2013). As such, they can only guess at
how ANGELINA develops games in the Design Phase.

We found this was a particular problem for ANGELINA,
because observers were unable to distinguish work done by
ANGELINA from work done by us in building the system.
For example, for ANGELINA3 we built a template game
for the system to modify. This meant that aspects of the
game like how the camera moved, the player’s appearance
or the control scheme were all out of ANGELINA’s control.
Players frequently attributed this to ANGELINA, however,
because they didn’t know enough about the design process
to know what the system was actually responsible for.

Short Term Impact

The second major problem, which we believe may have been
exacerbated by the opaque nature of the design phase, is
that people were unimpressed or confused by the higher-
level structure of the system. We believe that because they
were unable to assess ANGELINA effectively by examin-
ing its design work, they instead looked to other aspects of
the system for evidence of creative autonomy, such as how
the software operates not when creating a single artefact, but
across its entire lifespan. Common questions asked by both
journalists and the general public included:

e Can the system learn new things?
e How does the system decide when to make a new game?
e How many games has it made?

Can it play other people’s games and learn from them?

None of these questions refer to the act of designing a
game: instead they touch on the long-term growth of the
system; whether the system has creative independence; what
the system’s legacy is; and whether it can engage with the
existing culture of videogames. It speaks to a higher-level
thinking about Al, one that is willing to accept that the sys-
tem can perform certain tasks, but now wants to know what
those tasks are in aid of, and whether they are in the context
of a wider environment.

Previous versions of ANGELINA lacked good answers
to these questions. We decided when to run ANGELINA,
and what it should make a game about. The act of cre-
ation left almost no long-term impact on ANGELINA - in
a rare case, ANGELINAj3; would remember past topics and
respond slightly differently if it came across them again. It
could not engage with other creators (the closest we came

was having other creators engage with it, when its game jam
entries were judged by its peers). It did not develop over
time, and it had no long-term goals — it was designed to
run as a blank slate, create something, and then stop. Our
use of co-operative co-evolution also hampered us, because
during co-evolution every aspect of the game’s design was
constantly in flux, and constantly dependent on every other
aspect of the design, which made it hard to extend the design
phase or add systems that modified or adapted the design
process.

Different Creative Modalities

Besides the opacity of the design phase and the lack of
long-term structure, there was also a technical problem
we encountered when designing previous iterations of AN-
GELINA, namely that we found it hard to balance high-level
design work and fine-grained discovery work. ANGELINA4
used metaprogramming to invent new game mechanics, but
in order to do so, it would exhaustively simulate an existing
game with specific objective functions. This was intensive
work just to discover a new game mechanic in a fairly stable
search space. On the opposite end, ANGELINAj5 used pa-
rameterised game mechanics and simple level design algo-
rithms so it could rapidly prototype and test games, allowing
it to explore a higher-level design space more quickly. Com-
bining these in a single system would be difficult. There
would be no way to have both activities working simulta-
neously in a cooperative coevolutionary system because a
small change in the high-level design would seriously dis-
rupt the low-level search for new game mechanics.

At the same time, discovering game mechanics, or any
other kind of detailed design knowledge, felt like some-
thing that should happen outside of an ordinary game cre-
ation loop. Yet there was no obvious place to put this,
because ANGELINA was only run when we intended for
it to design a game, and there was no clear plan for how
newly-discovered design knowledge would be fed into AN-
GELINA’s normal game design process. Discovering new
game mechanics produces no immediately consumable cre-
ative artefact, yet seems like an important part of the sys-
tem’s growth. Who should decide what kind of task it un-
dertakes, or when it undertakes them? It felt difficult to build
a system in the way we had been, while enabling all these
different motivations and modalities for creativity.

Product, Process and Presence

(Jordanous 2015) notes that “traditionally within computa-
tional creativity the focus has been on... [a] system’s Prod-
uct or its Processes” — by which they mean the artefacts
produced by software, and the way in which those artefacts
were made. In reflecting on our work on ANGELINA, we
propose a third element to this line of thinking, which we
call Presence. Presence is the impact a computationally cre-
ative system has on its environment, and the impact the en-
vironment has on that system in return. It accumulates over
time, and encompasses both tangible things (such as a sys-
tem’s knowledge of its past work) and intangible things (the
perception the public has of the system). To put these three
elements in context: product relates to a single artefact, at

the moment it is consumed by an observer; process relates
to the means by which that artefact came into being; pres-
ence relates to the impact of the system’s history and envi-
ronment on the process being undertaken, and the impact the
resulting product will have on the future of the system and
its environment. Presence is not merely the sum total of the
system’s output — it also includes things such as how the sys-
tem influences and is influenced by its peers and critics; how
the system relates to and is perceived by its audience; how
the system sets and achieves goals for itself; how it learns
and grows through creating.

At the time of writing, many systems in Computational
Creativity have a presence, but it is almost entirely sustained
by the involvement of the system’s designers. For exam-
ple, ANGELINA’s presence is sustained by talks given by
the authors about the system; by a website of projects that
is manually maintained by the authors; by public events like
entering game jams or releasing games that are chosen by
the authors. It is not detrimental to the system’s creativity
to have people contribute to a system’s presence, indeed it
may never be possible to fully separate a system’s creator
from that system’s legacy. However, the software must also
have some responsibility in creating and managing its own
presence, as a step towards us handing over creative respon-
sibility to a system, and enabling software to have creative
autonomy not just over what they make, but on their place
in the wider world, and any creative communities they may
exist within the context of.

In redesigning ANGELINA, our intentions were to find
a way to increase this sense of presence in the system. We
aimed to do so not simply by adding features to the software,
but by designing the structure of ANGELINA in such a way
that it would not need to be rebuilt as often as previous ver-
sions, and in a way that encouraged future additions to the
system to preserve and expand the system’s presence. In the
next section we describe how we went about doing this.

Designing For Presence In ANGELINA

We designed the latest version of the system, ANGELINAg,
to take into account the conclusions of our project review,
and the identification of presence as a lacking element in the
system to date. The result is a design which we hope will
not only produce better games, and frame them in richer and
more compelling ways, but also a system with more control
over its own presence, and a better foundation on which to
build new features and do more research in the future, with-
out rebuilding the system again. In this section, we provide a
high-level overview of some of the system’s most important
features, before discussing lessons learned from this process
in the following section.

Overview

ANGELINAg maintains a database of active game designs
that it is working on, each of which has a metadata file which
tracks important statistics about the project and tasks that
need to be completed. When the system has completed a
task, it checks this database and selects a project that has
active tasks and is not on hold. After ANGELINAg loads

the project by parsing the game’s project file (written in a
domain-specific game description language, described be-
low), it selects a pending task on the project’s to-do list and
passes control to a module designed to complete that par-
ticular task. When ANGELINAg has completed its current
task, it will modify the project file, updating the game if the
task was completed successfully, and making notes in the
metadata file for future work. If the game is ready to release
or needs to be abandoned, it may perform additional steps
here, otherwise it files the game back in the database and
begins the cycle of selecting a new game to work on.

Continuous Creativity

One of the most important changes in this version of
ANGELINAg is that the system does not have a defined start
or end point. Instead of being turned on, creating a game,
and then stopping, ANGELINAg is designed to constantly
cycle through a database of active game projects with asso-
ciated lists of pending tasks. It can also choose to start a
new project to add to this list, or declare a project as aban-
doned or released to remove it from the list. Theoretically
speaking, ANGELINAg can now run indefinitely, moving
between creative tasks and producing games forever. In
practice, we do not actually run ANGELINAg perpetually
for reasons of energy conservation and hardware strain, but
the system resumes exactly what it was last doing when it is
restarted. The decision to design ANGELINAg as a contin-
uous system was one of the earliest decisions we made when
redesigning the software, and it forms the core of what we
call continuous creativity, a way of building software that
we describe in detail in (Cook 2017).

Making the system continuous is the most important de-
sign decision made in the new version of ANGELINAg. A
continuous structure gives us the ability to have the system
change the order in which it performs creative tasks, or even
change which creative projects it works on. It also raises
questions about how these systems should be upgraded, how
often — if at all — a system should be reset, and how the data
within them should be structured. By forcing ourselves to
commit to the notion that this software is always working,
always existing in the world, we change our relationship
with the software as creators, and put the long-term pres-
ence of the software above short-term research goals. The
software is now in control of what it does and when it does
it, it decides when to start work on something and when to
change to something else or stop entirely. This shifts the re-
lationship between the public, the system and us as its pro-
grammers, and puts more emphasis on the system’s auton-
omy and independence.

Task-Driven Design

Prior versions of ANGELINAg used cooperative coevolu-
tion to simultaneously design all aspects of a game together.
The main advantage we perceived this as having was that all
aspects of the design could be solved simultaneously, and
therefore any part of the design could ‘lead’ and influence
other parts. However, this approach came with many draw-
backs, including a higher complexity for observers and over-
correction between subsystems. The new ANGELINAg es-

chews this approach, and instead breaks up each part of the
design into its own separate task — thus, when ANGELINAg
is designing a level now it is only designing a level, and
nothing else is happening at the same time. We provide
ANGELINAg with a catalogue of tasks for different pur-
poses, which can be parameterised to specialise a task to a
particular game or phase of development. Current tasks in-
clude designing rulesets, sketching level concepts, designing
levels, and assigning art and colour schemes to the game’s
content. Each task employs its own process for completing
its work: for example, level design uses a mix of evolution-
ary design and MCTS for testing levels (Browne et al. 2012),
while ruleset design uses abductive reasoning and answer set
programming (Gelfond and Lifschitz 1988).

The most immediate benefit from this is clarity and trans-
parency: it’'s now simple to express to observers what the
system is doing at any given time, because it is only ever
doing one thing. We also gain a new kind of nonlinearity
to the way the system works, despite giving up the simul-
taneous nature of the coevolutionary approach. Currently,
ANGELINAg is given a loose structure in how it designs
games: design a ruleset; experiment with level design to
confirm the ruleset’s potential; design several larger levels
to fit the game; release the game. However, in the future as
ANGELINAg’s task catalogue expands, we plan to give the
system the autonomy to dynamically change its task queues
to fit a particular game. For example, it might discover that
it cannot design many interesting levels, and so schedules a
task to extend the ruleset and make it more complex. After
doing this, it will schedule further level design tasks, as well
as another task to evaluate the older levels and confirm they
still work in the context of the new ruleset.

This is all possible because the task system is entirely
modular and written with clear interfaces that ANGELINAg
can use. For example, the Level Design task can be cus-
tomised to change aspects such as the size of the level, the
complexity of the desired solution, and the depth with which
to search for solutions. This means ANGELINAg can easily
adjust the same modular task to accommodate exploratory
design, simple level design, and deep ruleset exploration. In
the future, we hope this will lead to ANGELINAg having a
lot of autonomy over how it works, and provide it with op-
portunities to refine its work and go back and improve on
tasks that are already completed.

Longer Design Cycles

Continuous work shifts the emphasis of the software away
from producing a single game and towards growth as a game
designer over many creative acts — in other words, it em-
phasises presence over process. An individual game project
is now just a section in the long-term existence of the sys-
tem, rather than the target outcome of running the system.
This also removes the need to generate a game by a dead-
line — previously we would want ANGELINAg to produce
a game relatively quickly because the system could not save
its work, and thus had to create a game in a single execution.
A continuous system doesn’t need to work in this way, and
so we are using this as an opportunity to build a system that
spends weeks producing an artefact rather than hours.

One of the reasons people were fascinated by how long
it took ANGELINAg to produce a game is that Al, particu-
larly creative Al, can seem mysterious to the general public.
Even though ANGELINAg’s games were not blockbuster-
quality, the idea that it only took four or six hours to make
one seemed impressive. One of the benefits of changing the
timeframe of ANGELINAg is that it shifts its work from be-
ing on the scale of software to being on the scale of humans.
This isn’t just a perceptual benefit, however. Working more
slowly means we have more opportunities for observers to
engage with the process — ANGELINAg can tweet about a
game idea it has had, and blog about the development pro-
cess over multiple weeks, culminating in the release of the
game. This allows people to see development and growth
during creation, not just after the fact as has been the case
before. This is a new approach to framing for the project.

This also opens up opportunities for ANGELINAg to
work with people more directly. Game developers fre-
quently collaborate with others to complete a game, and
also send their game to playtesters to get feedback. Up
until now, ANGELINAg’s short timescale has meant that it
has had to play its own games, and acquire pre-existing art
and music from online sources. But working over weeks
means ANGELINAg can send out games to testers and wait
for feedback, or send commissions to artists and musicians
and wait for responses. These are exciting opportunities
for research into human-software collaboration, and longer
timescales make it feel like a natural part of the process.

Custom Engine & Description Language

Past versions of ANGELINAg used game templates de-
signed by hand which they then modified and exported. This
restricted the systems more, but made it easier to build them
in the first place, and much easier to disseminate the finished
games which was always a key objective. This version of
ANGELINAg, much like ANGELINAS, is built in the Unity
game development environment, but unlike ANGELINAjy
its output is a text file, not a Unity project. This text file con-
tains the entire game described in a custom description lan-
guage we have made, inspired by VGDL (Schaul 2013) and
Puzzlescript (Lavelle 2014). The text files act like game car-
tridges or ROMs, in that they are fed into another application
which we have created, which interprets the language and
runs the game. The interpreter uses a custom game engine
which we built in Unity, meaning that both ANGELINAg
and the interpreter use exactly the same code to run games.
The immediate advantage to this approach is that it makes
it easier to distribute games, and easier for ANGELINAg
to release them. Almost all prior versions of ANGELINAg
needed some manual work by a person to compile and dis-
tribute its games, but now it can upload that text file to game
marketplaces, or send them via email. Using a description
language also has additional benefits though, primarily that
it allows other people to easily write games that can be inter-
preted by ANGELINAg. This means that for the first time
ANGELINAg can play games designed by other people and
learn design knowledge from them, or evaluate them and
give feedback to the designer. We intend to explore this
in future work and investigate how ANGELINAg can work

"trigger": "OVERLAP enemy playerpiece",

"code": [
"DESTROY $2",
"SFX punch2",
]
}
{
"trigger": "ENDTURN",
"code": [
"DO_AI_HUNT enemy playerpiece"
]
¥

Figure 1: A code snippet from a game description.

with and learn from other people.

Our decision to use a custom language rather than an ex-
isting one is partly down to other languages not quite fitting
our needs — Puzzlescript is quite abstract for software gen-
eration, and we felt the VGDL was too prescriptive. The
most important reason, however, is that we wanted a lan-
guage which was flexible enough to enable ANGELINAg
to extend it in the future. Figure 1 shows part of a game
description, to illustrate this. The part shown defines two
rules in the game, each structured as a trigger condition fol-
lowed by a list of things that happen when the condition is
met. The top rule says that when an enemy overlaps with the
player, the player piece is destroyed. The second rule says
that when a turn ends, enemies move towards the player.

We’ve designed the description language so that
ANGELINAg can engage with it at different levels depend-
ing on the kind of design work it is doing. At the high-
est level, it treats the entire code in Figure 1 as a single
game concept that it can add into a game without modifica-
tion (it adds enemies which chase the player and kill them).
ANGELINAg has a catalogue of these mechanics that it can
use to rapidly develop games with concepts that are known
to be useful. It can also create its own rules, using the lan-
guage to design triggers and lists of effects. This is a lower-
level action that would probably be performed outside of a
game design, in a prototyping phase where it experiments
with new game ideas. When it finds useful or interesting
mechanics, it can add them into its catalogue to use later in
higher-level design tasks. Finally, it can work at an even
lower-level, and use metaprogramming and code generation
techniques to add new keywords (like DESTROY) to the lan-
guage. We aim to extend our previous work in mechanic
discovery to do this (Cook et al. 2013). These new key-
words could then be used in low-level mechanic design, and
ultimately filter up into high-level catalogues of mechanics.
Being able to work at different levels fits in with the overall
philosophy of continuous creation and growth.

Discussion and Future Work

The notion of presence is relevant to all areas of Computa-
tional Creativity, and we believe that many of the engineer-
ing decisions made in the latest version of ANGELINAg also

Level Design

Currently Testing Playout

C Ml wiE N

LICim] S
BEE -
Dame D

Best Levels Played So Far

| Y~ [[3
Ohm0 DOm0 CICmsE
SBEiSw SRS~ BEEM
Cl(Ep(B] [(o]t 8] [[o [

Figure 2: A screenshot of ANGELINA’s workspace, on the
Level Design view.

have wide applicability to most of the domains that Com-
putational Creativity has been applied to. As with process,
there is no step-by-step guide to emphasising presence in a
system. Nevertheless, we believe the following three fea-
tures of ANGELINAg were useful in helping drive us to-
wards building a system with more presence:

o Continuous — The system has no beginning or end, and
seamlessly moves between tasks and projects, recording
its progress, starting and stopping projects as it sees fit.

e Modular — The system selects from several tasks in order
to advance a project, and tackles a single activity at a time.

e Long-Term — The system is built with long timeframes
in mind; a single project can take a long time to produce,
and a single project is less significant than the impact it
has on the system’s creative development.

These features help us think about the system beyond a
single creative act, and about how the system will change
over time, what interfaces it presents to the outside world,
and the ways in which it can be extended in the future.

Continuous creativity and exploring the notion of pres-
ence opens up a lot of future work — investigating how to mo-
tivate long-term systems, how to build more complex fram-
ing profiles using historical data, as well as raising questions
about how a system should be tested, how it should be reset,
and whether unofficial execution of the software, such as
during development, constitutes as part of the system’s offi-
cial ‘history’. For now, we identify two key areas of future
work that we intend to pursue:

Long Timescale Visualisation

ANGELINAg’s creative process is now much more acces-
sible, because it only works on one task at a time, and or-
ganises itself in a way that is perhaps closer to how peo-
ple organise large creative tasks (such as maintaining lists of
short-term goals, or evaluating progress as a project moves
towards completion). This means that people can now watch
ANGELINAg as it creates, something which has been tri-
alled before by software such as The Painting Fool (Colton
and Ventura 2014). However, the continuous nature of the
software changes the tenor of this experience, as people can

now observe the system over longer periods of time, which
allows them to notice changes in a particular artefact being
created, as well as growth in the system itself.

We plan to explore this by having ANGELINAg
livestream its creative process on online streaming sites such
as Twitch.tv. This will allow people to watch ANGELINAg
as it works, and we have designed a visual frontend to the
software that tries to represent ANGELINAg’s creative ac-
tivities in a way that faithfully represents the underlying al-
gorithmic activity. Figure 2 shows one of the design screens.
At the time of writing we have completed some trial streams,
and also had ANGELINAg exhibit at a major games expo,
which we hope to report on in a future publication.

Richer Framing

Because ANGELINAg records its progress in such detail,
including maintaining lists of tasks and projects, version his-
tory for its games and notes on the success or failure of tasks,
the system has a huge amount of data at its disposal about
the creative process. This is somewhat necessitated by the
continuous, modular nature of the system — since it has to
be able to suspend projects and transfer data between mod-
ules, it has to keep meticulous records and copious metadata
about each creative project it starts. This, combined with the
slower, long-term nature of the system, opens up powerful
new ways for the system to frame its work to observers.

We also have opportunities for framing during the cre-
ative process which is not something we believe has been
attempted before in Computational Creativity. Because the
creative process aims to last days or even weeks, we can
have the system comment and reflect on its process while it
is still working on a project. This provides even greater op-
portunities than before to have a system remark on changes
in direction, leaps in progress, and crucial decisions. Even
though many computationally creative systems exhibit these
properties, they are rarely highlighted during short, intense
generative processes. Continuously creative systems, how-
ever, provide natural points between tasks where a system
can reassess its work and identify next steps, or make notes
about the process for later framing.

In tandem with our livestream experiments, we are also
developing ANGELINAg to engage in more active forms
of framing, by allowing viewers of the livestream to ask
ANGELINAg questions using a limited set of phrases the
system understands. This allows viewers to retrieve framing
information from the system dynamically, at different stages
of development. Examples of these questions include: ask-
ing what project the system is working on currently; asking
what other tasks they have to do next; or asking what a spe-
cific game piece does in the game being worked on. We plan
to study the impact of this active framing on the perception
of the software as creative; we anticipate it will have a pos-
itive impact and help connect observers more closely to the
creative process during creation, rather than only allowing
engagement after the fact.

Related Work

Automated game design is a growing area of study, and is
beginning to fork into a set of subproblems that share a com-

mon core. One of these is the generation of test cases for
general game playing — unseen games, or games designed
to specifically test a particular area, would help research
into general game playing, and also has benefits for certain
kinds of competitive human play. Research that closely links
general game playing to game design, such as (Khalifa et
al. 2017) and (Bontrager et al. 2016), are forging a link
between these problem domains, as is the emergence of a
game design track in the General Video Game Al compe-
tition (Liebana et al. 2016). This challenge-first approach
can be traced back to work by (Togelius and Schmidhuber
2008), for example, who designed rulesets for games based
on how hard they were to learn.

Another application area is automated design as support
for other game designers. The Sentient Sketchbook (Liapis,
Yannakakis, and Togelius 2013) is a tool that assists in the
level design process, with an innovative interface that helps
sort and visualise important information and opportunities
to the user. In a similar vein, (Shaker, Shaker, and Togelius
2013) present Ropossum, an interactive level design tool for
physics-driven games like Cut The Rope. While these tools
don’t try to take on the entire game design process, they use
very similar techniques and show how Al tools can assist in
a variety of different game design contexts.

Similarly, work by Osborn proposes that this broader goal
of ‘discovering game design knowledge’ should be one of
the field’s objectives (Osborn, Summerville, and Mateas
2017), something that echoes a paper by Smith, one of the
earliest game design papers at ICCC, which proposed the
concept of a machine that discovered game design knowl-
edge through experimentation (Smith and Mateas 2011). We
are already seeing work aimed at discovering or translating
game design knowledge, for example through machine vi-
sion and interpretation (Guzdial and Riedl 2016) (Guzdial,
Li, and Riedl 2017), or reasoning about game design knowl-
edge using formal methods (Martens et al. 2016).

Many other systems exist simply to further the broader
goal of building software that can design games. Sometimes
this is focused on a narrow genre, such as Barros et al’s
work on mystery puzzle games (Barros, Liapis, and Togelius
2016), while others attempt broader systems that target a less
complex but also less fixed structure, such as the Game-o-
Matic, possibly the most successful automated game design
project to date (Treanor et al. 2012). These systems often
tackle the hard problems of cultural knowledge, too, such as
Nelson and Mateas’ system which built simple games from
plain text descriptions (Nelson and Mateas 2008).

Conclusions

In this paper, we described a new version of ANGELINA,
rebuilt to reflect our changing ideas about computational
creativity and automated game design. We introduced the
notion of presence in computationally creative systems, to
complement well-established notions of process and prod-
uct. We showed that past versions of ANGELINA lacked
presence, and how redesigning a new version of the software
to be continuously creative helped guide us towards a design
that can take more responsibility for its own presence and
long-term growth. Finally, we laid out our immediate next

steps for ANGELINAg, and some next steps for those look-
ing to incorporate these ideas into their own systems too.

Acknowledgments

This work is funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities). The authors wish to thank
the reviewers for their feedback on the paper; the Max
Planck Institute for Software Systems; the automated game
design community for many years of discussion that shaped
ANGELINA up to this point; and Chris Donlan, for asking
the right questions.

References

Barros, G. A. B.; Liapis, A.; and Togelius, J. 2016. Murder
mystery generation from open data. In Proceedings of the
International Conference on Computational Creativity.

Bontrager, P.; Khalifa, A.; Mendes, A.; and Togelius, J.
2016. Matching games and algorithms for general video
game playing. In Proceedings of the Conference on Arti-
ficial Intelligence in Interactive Digital Entertainment.

Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P. I; Tavener, S.; Perez, D.; Samothrakis, S.; Colton,
S.; and et al. 2012. A survey of monte carlo tree search
methods. IEEE TRANSACTIONS ON COMPUTATIONAL
INTELLIGENCE AND Al.

Charnley, J.; Pease, A.; and Colton, S. 2014. On the notion
of framing in computational creativity.

Colton, S., and Ventura, D. 2014. You can’t know my mind:
A festival of computational creativity. In Proceedings of the
International Conference on Computational Creativity.

Colton, S., and Wiggins, G. A. 2012. Computational cre-
ativity: The final frontier? In ECAI, Frontiers in Artificial
Intelligence and Applications.

Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Me-
chanic miner: Reflection-driven game mechanic discovery
and level design. In Proceedings of the EVOGames Work-
shop, Applications of Evolutionary Computation Confer-
ence.

Cook, M.; Colton, S.; and Gow, J. 2013. Nobody’s a critic:
On the evaluation of creative code generators. In Proceed-
ings of the International Conference on Computational Cre-
ativity.

Cook, M.; Colton, S.; and Gow, J. 2017. The ANGELINA
videogame design system - part I. [EEE Trans. Comput.
Intellig. and Al in Games 9(2):192-203.

Cook, M. 2015. Cooperative Coevolution For Computa-
tional Creativity: A Case Study In Videogame Design. Ph.D.
Dissertation, Imperial College, London.

Cook, M. 2017. A vision for continuous automated game
design. In Proceedings of the Experimental Al and Games
Workshop at AIIDE.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. 1070-1080. MIT Press.
Guzdial, M., and Riedl, M. O. 2016. Game level generation
from gameplay videos. In Proceedings of the Conference on
Artificial Intelligence in Interactive Digital Entertainment.

Guzdial, M.; Li, B.; and Riedl, M. O. 2017. Game engine
learning from video. In Proceedings of the Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, 1J-
CAIL

Jordanous, A. 2015. Four pppperspectives on computational
creativity. In AISB 2015 Symposium on Computational Cre-
ativity.

Khalifa, A.; Green, M. C.; Liebana, D. P.; and Togelius,
J. 2017. General video game rule generation. In IEEE
Conference on Computational Intelligence and Games.

Lavelle, S. 2014. Puzzlescript. http://www.puzzlescript.net/.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of ACM Conference on Foundations of Digital
Games.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Com-
putational game creativity. In Proceedings of the Interna-
tional Conference on Computational Creativity.

Liebana, D. P.; Samothrakis, S.; Togelius, J.; Schaul, T.; and
Lucas, S. M. 2016. General video game Al: competition,
challenges and opportunities. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Martens, C.; Summerville, A.; Mateas, M.; Osborn, J.; Har-
mon, S.; Wardrip-Fruin, N.; and Jhala, A. 2016. Procedu-
ralist readings, procedurally. In Proceedings of the Experi-
mental Al and Games Workshop at AIIDE.

Nelson, M. J., and Mateas, M. 2008. An interactive game-
design assistant. In Proceedings of the 13th International
Conference on Intelligent User Interfaces.

Osborn, J. C.; Summerville, A.; and Mateas, M. 2017. Au-
tomated game design learning. In Proceedings of the IEEE
Conference on Computational Intelligence in Games.

Potter, M. A., and Jong, K. A. D. 1994. A cooperative
coevolutionary approach to function optimization. In Pro-
ceedings of the International Conference on Evolutionary
Computation.

Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Proceedings of the
IEEE Conference on Computational Intelligence in Games.
IEEE Press.

Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In Proceedings of the Conference on Artifi-
cial Intelligence in Interactive Digital Entertainment.

Smith, A. M., and Mateas, M. 2011. Knowledge-level cre-
ativity in game design. In Proceedings of the International
Conference on Computational Creativity.

Togelius, J., and Schmidhuber, J. 2008. An experiment in
automatic game design. In Proceedings of the IEEE Confer-
ence on Computational Intelligence in Games.

Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.

2012. The micro-rhetorics of game-o-matic. In Proceedings
of the Foundations of Digital Games Conference. ACM.

