Autopia: An Al Collaborator for Gamified Live
Coding Music Performances

Norah Lorway! Matthew Jarvis! Arthur Wilson! Edward J. Powley? and John Speakman?

Abstract. Live coding is “the activity of writing (parts of)
a program while it runs” [20]. One significant application of
live coding is in algorithmic music, where the performer mod-
ifies the code generating the music in a live context. Utopia®
is a software tool for collaborative live coding performances,
allowing several performers (each with their own laptop pro-
ducing its own sound) to communicate and share code during
a performance. We propose an Al bot, Autopia, which can
participate in such performances, communicating with human
performers through Utopia. This form of human-Al collabo-
ration allows us to explore the implications of computational
creativity from the perspective of live coding.

1 Background
1.1 Live coding

Live coding is the activity of manipulating, interacting and
writing parts of a program whilst it runs [20]. Whilst live
coding can be used in a variety of contexts, it is most com-
monly used to create improvised computer music and visual
art.

The diversity of musical and artistic output achievable with
live coding techniques has seen practitioners perform in many
different settings, including jazz bars, festivals and algoraves
-an event in which performers use algorithms to create both
music and visuals that can be performed in the context of a
rave. What began as a niche practice has evolved into an inter-
national community of artists, programmers, and researchers.
With a rising interest in “creative coding”, live coding is well
positioned to find more mainstream appeal.

At algoraves, the screen of each performer is publicly pro-
jected to create transparency between the performer and the
audience. The Temporary Organisation for the Permanence of
Live Algorithm Programming (TOPLAP) make it clear how
important the publicity of the live coder’s screen is in their
manifesto draft: “Obscurantism is dangerous. Show us your
screens” [18].

A central concern when performing live electronic music is
how to present “liveness” to the audience. The public screen-
ing of the performer’s code at an algorave is often discussed in

1 Academy of Music and Theatre Arts, Falmouth Uni-

versity, UK. Email: norah.lorway@falmouth.ac.uk,
MJ196235@falmouth.ac.uk, AW193362@falmouth.ac.uk

Games Academy, Falmouth University,
UK. Email: edward.powley@falmouth.ac.uk,
john.andrew.speakman@falmouth.ac.uk
3 https://github.com/muellmusik/Utopia

2

regards to this dynamic between the performer and audience,
where the level of risk involved in the performance is made ex-
plicit. However, in the context of the system proposed in this
paper, we are more concerned with the effect that this has on
the performer themselves. Any performer at an algorave must
be prepared to share their code publicly, which inherently en-
courages a mindset of collaboration and communal learning
with live coders.

1.2 Collaborative live coding

Collaborative live coding takes its roots from laptop or-
chestra/ensemble such as the Princeton Laptop Orchestra
(PLOrk), an ensemble of computer based instruments formed
at Princeton University [19]. The orchestra is a part of the
music research community at the University and is concerned
with investigating ways in which the computer can be inte-
grated into conventional music making. PLOrk attempts to
radically transform those ideals [19]. Each PLOrk meta in-
strument consists of a laptop, multi-channel hemispherical
speaker and a variety of control devices such as game con-
trollers, sensors amongst others [19]. The orchestra consists
of 12-15 students and staff ranging from musicians, computer
scientists, engineers and others and uses a combination of
wireless networking and video in order to augment the role
of the conductor [19].

UK based live coding ensembles such as the Birmingham
Ensemble for Electroacoustic Research (BEER) based at the
University of Birmingham have taken influence from ensem-
bles such as PLOrk, but differ in terms of the way they inte-
grate communication and collaboration within the ensemble.
The ensemble was formed in 2011 by Scott Wilson and No-
rah Lorway [22] and began as an “exploration of the potential
of networked music system” for structured improvisation[22].
The ensemble works primarily in the SuperCollider (SC) lan-
guage® and the JITLib (Just in Time Library)® classes in
SC for basic live coding functionality [22]. In terms of en-
semble communication and coordination, BEER uses Utopia
(Wilson et al 2013), a SuperCollider library for the creation
of networked music application which builds on the Repub-
lic quark® and other such networked performance systems
in SuperCollider. Networked collaboration in live coding was
present from the inception of live coding where multiple ma-
chines are clock-synchronized exchanging TCP/IP network

4 https://github.com/supercollider/supercollider
5 http://doc.sccode.org/0verviews/JITLib. html
6 nttps://github.com/supercollider-quarks/Republic

messages [5]. Utopia aims to provide a more modular ap-
proach to networked collaboration, featuring enhanced flex-
ibility and security over other existing solutions. It also pro-
vides an efficient way to synchronize communication, code and
data sharing over a local network. Unlike an ensemble such
as PLOrk which uses a human conductor such as in a tradi-
tional orchestra, Utopia eliminates the need for this, allowing
for a more streamlined shared approach, where performers
collectively make musical decisions.

2 DMotivation
2.1 Computational creativity

Using an Al bot within the context of a networked live coding
performance, is an idea that builds on a study undertaken
by McLean and Wiggins [12], regarding live coding towards
Computational Creativity.

Computational Creativity can be described as the aim of
“endowing machines with creative behaviours” [15], and sys-
tems designed to do so can be put to practical uses from sim-
ulating and automating existing human processes (creativity
as it is), to discovering novel outcomes (creativity as it could
be) [15], which could be valuable to the “scientific study of
creativity” [21]. In the context of this proposal, we are con-
cerned with the latter.

The McLean and Wiggins study [12], highlighted a view
among live coding practitioners that the code resulting from
their practice contains an element of the programmers style,
and that “many feel they are not encoding a particular piece,
but how to make pieces in their own particular manner” [12].
This is a sentiment that is echoed by Wiggins and Forth [21]
in the following statement:

“In a manner akin to the extended-mind theory of con-
sciousness [3], the live coder becomes attuned to thinking with
and through the medium of code and musical abstractions,
such that the software can be understood as becoming part
of the live coder’s cognition and creativity” [21].

Through a process of “reflexive interaction” [21], the hu-
man performer(s) and artificial agent each influence the ac-
tions of the other. Entering into a “complex feedback loop” [8],
the artificial agent becomes an “imperfect mirror” of the hu-
man performer(s) [21]. We propose that through the analysis
of the artificial agent’s behaviours, we can extend our un-
derstanding of what constitutes “valuable” musical output,
while challenging existing dogmatic approaches to live coding
practice, and techniques relating to the chosen programming
language (SuperCollider), where the formalisation and subse-
quent manipulation of syntax trees can provide new insight to
the language’s potential. Finally, it can provide insight into
the nature of creativity in general, by analysing emergent be-
haviour from the bot.

Ultimately, our motivation can be summarised in the fol-
lowing quote: “When the computer becomes a conversation
partner, or a boat rocking us in unexpected directions, we may
find that the technologies we build become more useful, more
musical, more interesting than our original conceptions” [8].

2.2 Gamification

There has been work on the use of gamification to facilitate
creativity [9]. This generally draws upon the idea of flow [7] —

the idea being that flow is important to creativity, and that in-
cluding some game-like elements in a creative software or pro-
cess can help to put users into this flow state. Taken further,
this leads to the idea of casual creators [6] — creative tools
whose interface is designed to promote a “playful, powerful,
and pleasurable” user experience (unlike more traditional cre-
ative software where “powerful” would take precedence over
the other two). Aiming for playfulness in this context can also
promote curiosity and experimentation [13].

Gamification has also been studied in the context of collec-
tive creativity [16]. There are obvious analogies between col-
laborating on creative tasks and playing a multiplayer game,
and the ideas used in the latter to foster collaboration (or,
in some cases, competition) may prove useful in the former.
For instance, the Female Interface Research Ensemble (FIRE)
based at the University of Birmingham, used Utopia and gam-
ified collaborative approaches in their algorave performance
during The New Interfaces for Musical Expression conference
in 2014 in London, UK [11]. As another example, Nilson [14]
proposes a number of game-like exercises, many of them col-
laborative and/or competitive, to be used by live coders in a
practice context.

We propose taking a gamified collaborative creative en-
vironment and adding a “bot” — an Al agent which inter-
acts in the same way as a human would. Bots in multiplayer
games are often used as sparring partners for offline practice
matches, or to make up the numbers when not enough hu-
man players are available for a game, however the fact that
the play style of bots is different to that of humans tends to
change the dynamics of the game. We are interested in study-
ing whether the same is true for a collaborative live coding
performance — how does the introduction of one or more bot
performers change the dynamics of the performance?

3 The bot

In order to truly participate in the performance in the same
way as a human performer, the bot must carry out two Al
tasks: participating in conversation through the Utopia chat
interface, and generating and running SuperCollider code. For
the former we will draw on well-established chatbot technol-
ogy; for the latter we will use genetic programming (GP) [10].
SuperCollider code generally makes heavy use of nested func-
tion calls and mathematical expressions, often involving sev-
eral numerical constants that can be tuned, and so we hypoth-
esise that the language lends itself well to a GP approach.

The bot will implement the Template-Based Object-
Oriented Genetic-Programming algorithm [17] in CSharp, set
to automatically construct SuperCollider code from a series
of pre-defined templates. These templates, are built using a
genetic sequence, which is used to select the initial template,
usually a single line of SuperCollider code which has been bro-
ken into its constituent parts, as strings. The variables used
in these templates are filled in as values read directly from the
genetic algorithm or as variables created at an earlier point
in the automatic construction of the code.

This occurs in 3 phases: an initialization phase, which gen-
erates a series of initial sine waves, a modification phase which
alters those waves and an execution phase which plays the
generated sounds. Each of these phases corresponds to its
own library of templates. The generated code can then be re-

trieved using JavaScript, at which point it may be inserted
into, and executed by SuperCollider.

Code can be generated in a batch and bred together, rep-
resenting a generation. A call can be made which takes two
agents (genetic sequences which may be used to generate Su-
perCollider code) and breed them together using a simple ge-
netic crossover algorithm to produce a new, offspring agent.
Using this technique, multiple generations of agents may be
generated which can be used, with selection, to breed against
a fitness function.

The GP algorithm will run continuously, and at each gen-
eration the fittest individual will be executed through Super-
Collider. When other (human) performers execute code and
it is shared through Utopia, the GP system will add the code
to its own population, to introduce variety to the gene pool
and allow Autopia to build upon what the other performers
are doing. In the spirit of live coding performers sharing their
code, as discussed in Section 1.1, the bot’s screen (showing
the code it is evaluating and executing) will be projected so
that the audience can see it.

Any evolutionary computing approach requires a fitness
evaluation function. We propose to evaluate the fitness of in-
dividuals in the population through a basic machine listening
process: individuals will be run through a second instance of
SuperCollider, and the system will perform a frequency analy-
sis (i.e. Fourier transform) on the resulting audio output. This
will be compared to a frequency analysis of the audio output
being produced by the other performers. The more similar-
ity in frequency characteristics between the two, the higher
the fitness. As a first step this should at least weed out those
population members which produce undesirable results (such
as silence or white noise), though clearly the refinement of
the fitness measure is a fruitful line of future work. Collins [4]
suggests a number of more sophisticated machine listening ap-
proaches which may prove useful, and provides a JavaScript
library implementing several of these techniques’.

To introduce an aspect of gamification and to further en-
hance the GP system’s fitness evaluation, we will add a voting-
based points system to Utopia. A similar idea to this was al-
ready tested in Republic. This will allow participants (both
humans and bots) to vote each other up and down, giving
them feedback on their contributions (and for the bot, explic-
itly shifting the fitness evaluation towards the preferences of
the other performers).

4 Conclusions

Using Al in the context of live coding is relatively new and
unexplored. The idea of Al collaborators has been well ex-
plored in Computational Creativity, including in musical con-
texts, however the process used by the Al can sometimes be
opaque to observers and is almost certainly quite different
to the process used by human performers. By combining Al
with live coding we hope to overcome this — humans and
bots are participating at the same level and in the same way
(i.e. by manipulating code) — bringing the human-AT ensem-
ble closer to liveness. This also goes towards achieving the
goal, set out by the Birmingham Laptop Ensemble [2] in their
manifesto, of “integration, collaboration and the blurring of

7 https://github.com/sicklincoln/MMLL

the distinctions between, composer-performer-collaborator in
a democratic non-authoritarian ensemble” [1].

The state of flow is clearly desirable in creative activities.
The use of gamification can potentially be a powerful way of
getting participants into this flow state, as well as the idea
of voting borrowed from multiplayer games helping to facil-
itate the goals described above. The effect of introducing a
bot performer on the human performers’ flow state is less
easy to predict — our hope is that the bot will act as a “con-
versation partner” [8] and thus provide inspiration during a
performance.

REFERENCES
[1] BIiLE. BiLE manifesto. https://bilensemble.wordpress.
com/manifesto/.

[2] Graham Booth and Michael Gurevich, ‘Proceeding from per-
formance: An ethnograpy of the Birmingham Laptop Ensem-
ble’.

[3] Andy Clark and David J. Chalmers, ‘The extended mind’,
Analysis, 58, 7-19, (1998).

[4] Nick Collins, Towards Autonomous Agents for Live Com-
puter Music: Realtime Machine Listening and Interactive
Music Systems, Ph.D. dissertation, University of Cambridge,
2006.

[6] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian
Ward, ‘Live coding in laptop performance’, Org. Sound, 8(3),
321-330, (December 2003).

[6] Kate Compton and Michael Mateas, ‘Casual creators’, in Pro-
ceedings of the 6th International Conference on Computa-
tional Creativity, pp. 228-235, (2015).

[7] Mihaly Csikszentmihalyi, Creativity: Flow and the Psychol-
ogy of Discovery and Invention, Harper Perennial Modern
Classics, HarperCollins e-books, 2009.

[8] Rebecca Fiebrink and Baptiste Caramiaux, ‘The machine
learning algorithm as creative musical tool’, in The Ozxford
Handbook of Algorithmic Music, eds., Roger T. Dean and
Alex McLean, Oxford University Press, (2018).

[9] Marius Kalinauskas, ‘Gamification in fostering creativity’, So-
cial Technologies, 4, 62-75, (10 2014).

[10] John R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, Cam-
bridge, MA, USA, 1992.

[11] Norah Lorway, Brenna Cantwell, and Edie Pearce,
‘FIRENGINE: a new interface for gestural interaction
in live laptop performances’, in Proceedings of New Inter-
faces for Musical Ezpression (NIME), (2014).

[12] Alex McLean and Geraint A. Wiggins, ‘Live coding towards
computational creativity’, in Proceedings of the First Inter-
national Conference on Computational Creativity, (2010).

[13] Mark J. Nelson, Swen E. Gaudl, Simon Colton, and Sebastian
Deterding, ‘Curious users of casual creators’, in Proceedings
of FDG Workshop: Curiosity in Games, (2018).

[14] Click Nilson, ‘Live coding practice’, in Proceedings of the
Tth International Conference on New Interfaces for Musi-
cal Expression, NIME 07, pp. 112-117, New York, NY, USA,
(2007). ACM.

[15] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo
Dubnov, ‘An introduction to musical metacreation’, Comput.
Entertain., 14(2), 2:1-2:14, (January 2017).

[16] Aelita Skarzauskiene and Marius Kalinauskas, ‘Fostering col-
lective creativity through gamification’, (10 2014).

[17] John A. Speakman, ‘Evolving source code: Object oriented
genetic programming in .net core’, in Proceedings of AISB
symposium on AI, Games and Virtual Reality, (2019).

[18] TOPLAP. Manifestodraft. https://toplap.org/wiki/
ManifestoDraft, 2010.

[19] Dan Trueman, ‘Why a laptop orchestra?’, Org. Sound, 12(2),
171-179, (August 2007).

[20] Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex
Mclean, Dave Griffiths, Nick Collins, and Amy Alexander,
‘Live algorithm programming and a temporary organisation

21]

(22]

for its promotion’; in read-me, Software Art and Cultures,
eds., Olga Goriunova and Alexei Shulgin, (2004).

Geraint A. Wiggins and Jamie Forth, ‘Computational creativ-
ity and live algorithms’, in The Oxford Handbook of Algorith-
mic Music, eds., Roger T. Dean and Alex McLean, Oxford
University Press, (2018).

Scott Wilson, Norah Lorway, Rosalyn Coull, Konstantinos
Vasilakos, and Tim Moyers, ‘Free as in BEER: Some explo-
rations into structured improvisation using networked live-
coding systems’, Computer Music Journal, 38(1), 54-64,
(2014).

