

STIRRING UP PEA STEW: A NETWORKED FEEDBACK
STRUCTURE FOR LIVE CODING

Scott Wilson Norah Lorway Tim Moyers Rosalyn Coull Visa Kuoppala

Music Department
University of Birmingham
Edgbaston, Birmingham

B15 2TT
United Kingdom

beerensemble@contacts.bham.ac.uk

ABSTRACT

This short paper discusses Pea Stew, a musical work
that consists of a wireless meshed audio network
including an arbitrary number of laptop performers, and
a structure for improvisation using live coding
techniques. Pea Stew draws upon various precedents in
‘feedback music’, most notably Nicolas Collins’ classic
analogue work Pea Soup, but also Atau Tanaka and
Kasper Toeplitz’s Global String, David Tudor’s
Rainforest pieces, and Toshimaru Nakamura’s ‘No-
input Mixing Board’, amongst others. Using a design
initially developed by Wilson, ongoing development of
the piece has taken place during workshop sessions with
the Birmingham Ensemble for Electroacoustic Research.
Once seeded with noise, performers use live coding
techniques to intervene in the signal chain. The result is
collectively produced, and indeterminate: While every
change has an effect, the system is too complicated to
allow for the result to be predictable.

1. INTRODUCTION

In this paper we will discuss the musical work Pea Stew,
its design, implementation, and aspects of its
performance. The work was initially conceived and
designed by Wilson, and then further refined and
developed in workshops and performances with all the
authors (collectively BEER, the Birmingham Ensemble
for Electroacoustic Research). Pea Stew makes use of
audio feedback, with an arbitrary number of performers
sharing audio streams over a wireless network.
Performers intervene in the signal chain using live
coding techniques.

2. PRECEDENTS

There is of course a large body of ‘feedback music’. Of
particular relevance to Pea Stew are works such as
David Tudor’s Rainforest IV [1], which makes use of a
series of objects which serve as resonators for electronic
signals (in some versions with signals circulating in
‘networks’ of objects); Atau Tanaka and Kasper
Toeplitz’s Global String [2], which uses a wide-area
network as part of resonant system involving a multi-
site art installation; and Toshimaru Nakamura’s ‘No-
input Mixing Board’ approach [3], which uses feedback

loops and processing to manipulate sound originally
deriving from circuit noise, rather than an external
source.

As is likely apparent from its name, however, Pea
Stew is most immediately inspired by Nicolas Collins’
Pea Soup. Originally an analogue work, Pea Soup
consists in short of one or more feedback loops each
made up of a microphone, a limiter, a phase shifter
controlled by an amplitude follower, filtering, and a
loudspeaker. This creates a ‘site-specific “architectural
raga”’, in which feedback is controlled, and different
patterns of pitches emerge, as a result of the phase
shifter changing the resonances of the system [4].

3. IMPLEMENTATION

3.1. Normal or Body Text

Pea Stew is implemented in the SuperCollider language
[5], and makes use of the Republic Quark [6] (an SC
extension) for its basic network setup. Wilson has
written a custom SC class to interface with JackTrip [7],
an extension to the Jack audio system [8] that allows for
users to share audio streams over a network. JackTrip
requires individual pairs of client and server ‘devices’
for each connection, which makes configuration non-
trivial. Each pair allows for one or more bidirectional
audio streams. Called RepublicJackTrip, the custom
class allows for the straightforward creation of a
network of audio streams between an arbitrary number
of users, automating the allocation and creation of
JackTrip clients and servers. (Groups from sizes two to
five have been tested with successful results.)
RepublicJackTrip implements a fully meshed network
topology (see Figure 1).

S

S

S

SC

C

C

C

C S

S

C

Figure 1. A RepublicJackTrip network topology for
four players. An ‘S’ represents a JackTrip server
‘device’, a ‘C’ a client ‘device’. Each cluster of (in this
case) three devices, represents an individual node on
the network, i.e. a performer’s computer.

In the current configuration, each player runs a basic
processing node that collects and scales the signals sent
from other players. These are summed, and then fed into
a delay. The output of this is then sent to an FFT-based
process. This does the phase shifting a la Pea Soup, but
on a bin-by-bin basis, with each bin’s phase being
shifted according to its magnitude. In testing this
seemed to allow for more complicated sonic results than
a single phase shift.1 The output of this is then sent to a
limiter.

At this point in the signal path performers intervene
using live coding techniques to alter the sound. This is
generally done using the Just in Time Library (JITLib)
[5] included with SuperCollider. Processing can be
serial or parallel, and in practice we have not limited the
sorts of processing used.

The output from each player’s processing is sent to
other performers via the JackTrip connections, and
played over one or more loudspeakers (see Figure 2).

1 ‘More complicated’ refers here to the number of pitches in play
(which may or may not be desirable) and the patterns of movement,
and does not represent an aesthetic judgment.

Mix and scale

1 2 n...

Delay

FFT phase
shift

Limiter

Other
processing...

1 2 n...

Figure 2. Signal path for each player’s computer. The
numbers at top and bottom represent JackTrip receives
and sends from other players.

4. PLAYING PEA STEW

As an input-less digital audio network Pea Stew is
theoretically noise-less, so a performance cannot rely on
system noise as an initial source a la Nakamura, and the
network must be primed with some signal. We have
found low-level pink noise or impulse streams to be
useful for this purpose. Once the signal is introduced,
players turn up one or more of their inputs until the
system starts resonating, at which point the noise source
is generally removed. While it is relatively easy to set
the gain at some node low enough to cause the
resonance to stop, it is generally not necessary to re-
prime the system in such cases, since (at least until
enough time has lapsed that rounding errors reduce
samples to a value of zero), the signal is not silent,
merely currently inaudible, and increasing the gain will
cause it to return. That said, in some cases we have
found it interesting to inject a new signal at some point
in a performance, as this may activate new modes of
resonance.

Once seeded, a performance involves improvisation
through live processing of the audio stream. In addition
to live coding techniques, the code for the basic node
provides a GUI interface that allows for performers to
scale the input from each of the other players, weighting
it to different degrees. This also allows for the effective
reconfiguration of the network topology in real-time,
since by muting the correct inputs any possible topology
can be achieved. Since each connection between players

can be bi-directional or mono-directional, the number of
possibilities is large, and with larger numbers of
performers, two or more isolated sub-networks can be
created. In performance we have found varying the
network topology to be very useful. The GUI allows for
negative gains, i.e. phase inversion of the audio as it
passes that point in the network. The GUI also allows
the performer to control a number of parameters, such as
the lag time for the phase shift, and the input delay time
for this node. By lengthening the latter, a player can
change the resonance of the system, effectively lowering
the fundamental frequency of all audio paths passing
through that node. The value of the delay time is
initially set randomly, in order to avoid equivalent
resonances between pairs of nodes.

In terms of the processing involved performers have
used a variety of techniques, including distortion and
modulation, pitch shifting, granular techniques, and
applying amplitude envelopes to create rhythmic effects.
As one might expect, filtering is a very powerful tool in
this context, and can radically change the output of the
system, but we have found it to be something that is
easily overused.

Playing Pea Stew presents challenges somewhat
different to normal live-coding situations. The sound
produced is truly collective, and while the output heard
at each performer’s loudspeaker(s) will be different
(often quite surprisingly so), any individual change
made is likely to have an effect on the entire network, or
at least on any sub-networks that the performer is
currently a part of. Even straightforward processing is
rendered unpredictable (partly because most processing
is recursive along some path), and the experience has
been likened by one member to ‘trying to push around a
room-sized blob of jelly’. Each action a player takes has
some effect, but it is often impossible to anticipate what
it will be. While Pea Stew tends to force performers
outside their comfort zone in terms of the predictable
use of knowledge and skills, the experience of playing it
is often delightful and surprising in its indeterminacy.

5. FUTURE WORK

Development of Pea Stew is ongoing, and has already
involved many hours of workshop-ing and testing, as
well as a number of performances. In the future we
would like to experiment with a number of different
aspects.

One of these is the imposition of musical form.
BEER’s work has focussed on structured improvisation,
and in many cases this has involved strategies to create
formal structures that are more complicated than
improvisational flow, whether imposed or created on the
fly. One possibility would be to move through a number
of randomly or pre-determined topologies in a piece.
Another might be to make use of slightly different basic
processing for different sections. (We have tried a
number of variations in the phase shifting algorithm,
and they do exhibit different characters.)

Another possibility would be to allow processing
that is not recursive, i.e. processing whose output is only
to the loudspeakers, and is not sent to the other nodes of
the network. Currently this is only possibly in cases
where a performer is receiving from other performers,
but where all of them have set the input from her to
zero. While in some senses this would depart from what
we feel is the collective spirit of the piece, this would
allow performers greater control.

One final possibility to explore would be
performances with large numbers of players. In practice
we have found four or five to be more satisfactory
(although different in character) to two or three
performers, with a good balance between stability,
complexity, unpredictability and the ability to influence.
It seems likely that large ensembles would further
diminish the influence of individual performers, but
would provide more opportunities for interesting sub-
networks. Network performance might be a concern of
course, and it might be worth testing this on a wired
network rather than our usual wireless one.

6. LISTENING

A sample performance of Pea Stew is available here:
http://soundcloud.com/beer-ensemble

7. REFERENCES

[1] Driscoll, J. and M. Rogalsky. “David Tudor's
"Rainforest": An Evolving Exploration of
Resonance”, Leonardo Music Journal Vol. 14
(2004): 25-30.

[2] Tanaka, A. and B. Bongers. “Global String: A
Musical Instrument for Hybrid Space”,
Proceedings of the conference cast01//Living in
Mixed Realities, Bonn, Germany, 2001.

[3] Meyer, W. “Toshimaru Nakamura: Sound
Student”, Perfect Sound Forever (2003).
http://www.furious.com/perfect/toshimarunaka
mura.html

[4] Collins, N. Pea Soup: A History.
http://www.nicolascollins.com/texts/peasouphi
story.pdf

[5] http://supercollider.sourceforge.net

[6] Available at http://quarks.sourceforge.net/

[7] http://code.google.com/p/jacktrip/Jack

[8] http://jackaudio.org/

