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A B S T R A C T

Geometry understanding is a core concept of computer-aided design and engineering (CAD/CAE). Deep neural
networks have increasingly shown success as a method of processing complex inputs to achieve abstract
tasks. This work revisits a generic and relatively simple approach to 3D deep learning – a point-based
graph neural network – and develops best-practices and modifications to alleviate traditional drawbacks. It
is shown that these methods should not be discounted for CAD tasks; with proper implementation, they can
be competitive with more specifically designed approaches. Through an additive study, this work investigates
how the boundary representation data can be fully utilised by leveraging the flexibility of point-based graph
networks. The final configuration significantly improves on the predictive accuracy of a standard PointNet++
network across multiple CAD model segmentation datasets and achieves state-of-the-art performance on the
MFCAD++ machining features dataset. The proposed modifications leave the core neural network unchanged
and results also suggest that they can be applied to other point-based approaches.
1. Introduction

3D deep learning (DL) continues to mature towards applicability for
real use cases that add value to society. An explosion of pioneering
works brought countless new methods for processing 3D data in dif-
ferent formats [1–4]. More recently, theoretical frameworks are being
developed to consolidate the research landscape [5] and work is being
done to utilise these methods in applied science [6,7] and engineer-
ing [8–11]. Building on this, the current work focuses on automated
feature recognition for computer-aided design (CAD) — commonly
formulated as the task of semantic segmentation within the DL field.
This capability is a critical building block in computational engineering
applications, for example in process planning [12] or design optimisa-
tion [13]. While a system for automated feature recognition is useful in
itself, it also serves as a stage for developing a DL system that is able to
learn internal representations that are useful for arbitrary downstream
tasks — commonly referred to as ‘backbone’ networks [14].

Within CAD, boundary representation (b-rep) models are the de
facto digital encoding for geometry. However, due to the data struc-
ture’s complexity, it was not until recently that this 3D data rep-
resentation has been fully utilised by DL approaches [8–10]. Some
methods still use hand-crafted feature descriptors to convert the raw
b-reps to useable input to the network — this arguably does not
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fully leverage the high ceiling of deep representation learning [15].
Conversely, other methods apply more geometric approaches to CAD
model understanding [1,11,16] - giving hints that the neural networks
can learn sufficiently informative representations from the primitive 3D
data, and make useful predictions.

An advantage of using a more generic 3D shape representation is
that it allows for easier application outside b-rep models. It is much
easier to convert a b-rep model to a mesh, or a voxel, or a point
cloud representation than it is to reverse engineer a parameterised b-rep
model from these simpler representations [17]. While the current work
focuses on automated feature recognition in applications that use b-rep
models, other domains could benefit from this capability. For instance,
automated feature recognition on meshes or point clouds is required
for digital product life-cycle management [18,19].

This work investigates whether a simple, geometry-first approach
to CAD model understanding can achieve competitive performance
compared to approaches which are specifically designed for b-rep
processing. A point cloud representation is chosen as the data structure
for its simplicity and flexibility — this is further elaborated on in Sec-
tion 2. Instead of presenting a brand-new neural network architecture
for semantic feature recognition of CAD models, an additive study is
performed. A baseline approach is revisited and design decisions, both
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novel and from recent literature, are critically analysed for potential
improvements before integration. This is inspired by work from Liu
et al. [20] and Qian et al. [21].

The paper is structured as follows. Section 2 reviews related work
in the field of automated feature recognition, introduces the framework
of graph neural networks, and discusses the purpose of the current
work in relation to the field. Section 3 describes the additive study
— in terms of the baselines, benchmarks, and training and evaluation
methods used. Section 4 forms the bulk of the paper where a single
public dataset (MFCAD++ [10]) is used to build an ‘optimal’ model
configuration. Because of the additive nature of the study, each subsec-
tion within Section 4 contains both method descriptions and immediate
results before continuing with further system modifications. Finally,
Section 5 presents the ultimate results when applying the proposed
method extensions on a number of public CAD semantic segmentation
datasets [8,10,11] - this is discussed and compared with the results of
approaches presented in those works.

2. Literature review

2.1. Background

There has been much work over the past decades around automated
feature recognition. This commonly centred around the automated
transition between CAD and computer-aided manufacturing (CAM) or
in the area of computer-aided process planning (CAPP) more broadly.
For a full historical review, see Shah et al. [22]. There also exists
the application for automated transition between CAD and simulation.
Where the identification and location of features are used to aid in
meshing, boundary condition specification, and post-processing [13,
23]. The majority of methods would now be classed as ‘algorithmic’
or ‘expert systems’ — in contrast to modern machine learning methods.
Arguably the most prolific of these algorithmic methods are topological
or graph-based approaches [24]. A graph is constructed using b-rep
faces as nodes and connected by their topological adjacency; these
edges are also given attributes based on the convexity of the b-rep
edge connecting the faces. Geometric features can then be recognised
by matching known sub-graphs.

On the other hand, basic learning-based approaches have also been
attempted since the 1990s [25,26]; these have mainly focused on
the use of face adjacency graphs together with hand-crafted features
(shape descriptors) as inputs to fully-connected neural networks. More
recently, as large convolutional neural networks (CNN) have dominated
computer vision, these ideas have increasingly been applied to feature
recognition on 3D shapes. A pioneering work by Zhang et al. [1]
introduced a dataset of CAD models each containing a single machining
feature to be classified; a voxel-based 3D CNN was also presented for
learning on this dataset. This neural network is a classifier – one se-
mantic label per input shape – and therefore a rule-based segmentation
algorithm was used to recognise multiple machining features in a part.
Subsequent works also employed the rule-based pre-segmentation and
neural network classifier combination: Shi et al. [27] used a multi-view
approach with 2D CNNs while Yao et al. [16] used a PointNet++ model
as the classifier network.

The aforementioned approaches tend to be limited by the rule-
based pre-segmentation step. To build a model which is able to perform
semantic segmentation directly, one needs a dataset with these labels
for training. A number of such datasets have been publicly released in
recent years. The MFCAD dataset from Cao et al. [28] was algorith-
mically generated to create various CAD models containing multiple
machining features — each face is labelled with the machining opera-
tion which created it. Colligan et al. [10] build on this with MFCAD++,
which has more intersecting features and attempts to ensure that each
generated shape is physically manufacturable. Zhang et al. [11] also
make available a separate machining features dataset with similar
semantic labels, algorithmically generated with CATIA. Apart from
2
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machining features, there is also the Fusion 360 Gallery segmentation
dataset from Lambourne et al. [8] - consisting of a variety of human
designed shapes. The b-rep faces are labelled with the CAD modelling
operation which was used to create them.

2.2. Geometric deep learning

To better understand the seemingly disparate geometry segmenta-
tion approaches in the growing literature, this subsection gives a brief
overview of the geometric deep learning framework of Bronstein et al.
[5]. In this framework, most real world data can be encoded as a
graph. Where a graph  = ( , ) consists of a set of nodes  , with
some 𝐷-dimensional attributes 𝐱 ∈ R𝐷, connected by a set of edges
 = {𝐞 ∣ 𝐞 ∈  × }. In this context, the task of geometry segmentation
then becomes node classification — where the nodes are geometric
entities like b-rep faces, mesh triangles, or points.

Hierarchical representations which are rich in semantic meaning
can be extracted from the graph by the learning system. This is done
by repeatedly aggregating the attributes (or latent vectors) of connected
nodes. The generalised operator for this, first formalised by Gilmer et al.
[29], can be defined as:

𝐱′𝑢 = 𝜙
⎛

⎜

⎜

⎝

𝐱𝑢,
⨁

𝑣∈𝑢

𝜓(𝐱𝑢, 𝐱𝑣)
⎞

⎟

⎟

⎠

(1)

here 𝐱𝑢 is the latent vector of node 𝑢 and 𝑢 is the neighbouring nodes
f node 𝑢, for some definition of neighbourhood. 𝜙 and 𝜓 are typically
ifferentiable, parameterised functions – like multi-layer perceptrons
MLPs) – and ⨁ is some symmetric (permutation invariant) function. 𝐱′𝑢
s then the new latent vector of node 𝑢 after the aggregation operation.
his is referred to as the message-passing formulation.

Eq. (1) can then be made more specific and less expressive depend-
ng on the application. Stacking these aggregations in layers results in a
raph neural network (GNN). From this, Bronstein et al. [5] show that
ne can derive most other DL architectures, even 2D grid CNNs and
ttentional-based Transformers.

.3. CAD semantic segmentation

With appropriate datasets, models for end-to-end semantic seg-
entation can be developed. In the current literature, there is no

lear consensus on the best 3D representation to pair with DL ap-
roaches. As the prevalent representation for CAD, it is reasonable
o try and directly use the b-rep data. However, the data structure’s
omplexity also necessitates complexity within the neural network
tructure. Jayaraman et al. [9] proposed a graph-based approach to
everage topology paired with 2D convolution in the parameter domain
o encode the b-rep geometry. Lambourne et al. [8] introduced a
nique convolution technique using a topological neighbourhood of
-rep entities. Both Colligan et al. [10] and Cao et al. [28] adopted
graph-based approach inspired by the attributed adjacency graphs

opular in b-rep processing. Hand-crafted shape descriptors were used
or graph nodes — for instance, face area or b-rep surface type. While
hese methods are able to easily extract information from the explicitly
epresented topology, geometric encoding is non-trivial in compari-
on. The implicit representation of the surface geometries is difficult
o process — evidenced by the sophisticated and specialised kernels
eeded to handle them in CAD software. In addition, the trend in deep
epresentation learning favours allowing systems to learn from raw data
ather than ‘‘engineering by hand’’ [15]. This paper argues that the
entioned b-rep methods lean towards the latter approach. Instead,

his work proposes to extend more general methods to fit the specific
pplication rather than constructing specific architectures from scratch.
hus allowing the exploitation of advances in the wider field which will

e discussed in the following.
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Fig. 1. Illustration of point convolution. Aggregating points within a Euclidean
neighbourhood — an implicit local graph.

Another frequently used representation in CAE is the polygonal
mesh. Mesh DL approaches in the literature [3,30,31] are often focused
on computer graphics applications with slightly less precision require-
ments to CAE. Those found in the CAE literature claim good results
but often struggle with large, high resolution meshes [23]. With the
GNN formulation, mesh approaches and point approaches, discussed
subsequently, can be seen as variants of each other. However, this
work is steered away from mesh encodings for its relative inflexibility
— without remeshing, it is tied to the existing vertices. In addition,
vertices can often be on b-rep edges which results in labelling ambiguity
at the intersection of geometric features.

Point clouds are a popular 3D encoding in DL literature, in large
part due to autonomous navigation applications [32,33]. As sets, they
could be processed with purely invariant functions [34,35]. However,
because of the underlying geometry, the inherent metric space imparts
local relationships. Thus, one can utilise a GNN to process this implicit
graph. The majority of approaches simply use geometric Euclidean
neighbourhoods as connectivity [2,36–39], illustrated in Fig. 1. Alter-
natively, Wang et al. [40] uses Euclidean neighbourhoods computed in
the latent vector space. Viewing them as GNNs, point-based approaches
in the literature are mostly variants of each other. The authors of this
work advocate for this holistic view which allows more focus on im-
proving specific aspects rather than proposing whole new architectures
that introduce confounding variables to any claimed result.

This work chooses a point cloud representation as the geometry
centric approach. Its simplicity and flexibility enables a consistent core
neural network architecture across applications. The wide literature
coverage of these methods speaks to its generality. Kashefi et al. [41]
and Kashefi and Mukerji [42] use a point-based approach to perform
fluid flow predictions and works by Zhang et al. [11] and Yao et al.
[16] suggest that this encoding is able to represent CAD geometry
sufficiently for feature identification. Many works in the literature
cite drawbacks to point-based approaches as reasons to choose other
representations. For instance, it is often incorrectly stated that these
approaches fundamentally require a fixed number of points as input
and thus sampling issues are faced — salient parts of a geometry can
be missed or underrepresented. Colligan et al. [43] tackle this problem
but still struggle due to the fixed size input assumption. When viewing
point-based approaches in the GNN framework, one can easily see that
this is an unnecessary requirement. This and other perceived drawbacks
will be addressed in detail in this work to show that these approaches
should not be discounted for solid geometry processing. Therefore, this
work also serves to collate and develop the discussion on best practices
for applying point-based approaches.

3. Method

3.1. The PointNet++ approach

The PointNet++ architecture, from Qi et al. [2], was chosen as
the core structure for the additive study. This applies the PointNet set
3

operator [35] – a pioneer in learning on irregular, permutation invari-
ant data – to a neighbourhood for building hierarchical representations.
It is arguably the simplest instantiation of a point-based GNN. The
opportunity is taken here to summarise the PointNet++ approach in the
lens of the geometric deep learning framework.

For PointNet++, Eq. (1) can be simplified to the ‘convolutional
flavour’ of aggregation [5]:

𝐱′𝑢 = 𝜙
⎛

⎜

⎜

⎝

𝐱𝑢,
⨁

𝑣∈𝑢

𝑐𝑢𝑣𝜓(𝐱𝑣)
⎞

⎟

⎟

⎠

(2)

where 𝑐𝑢𝑣 is a constant weighting for each neighbour. To obtain the
PointNet++ aggregation function: 𝑚𝑎𝑥 pooling is used for the symmetric
function ⨁, Euclidean neighbourhood is used for  , and 𝐱𝑢 is removed
as a dependence of 𝜙. Therefore,

𝐱′𝑢 = 𝜙
(

max
𝑣∈𝑢

𝜓(𝐱𝑣)
)

(3)

In this approach, the latent vector, 𝐱𝑣, is a concatenation of the pre-
vious latent vector, 𝐳, and the point’s coordinate in the neighbourhood
frame: 𝐱𝑣 = [𝐳𝑣;𝐩𝑣−𝐩𝑢]. It is also worth noting that self-loops are added
to the implicit graph; in other words, node 𝑢 is within 𝑢.

The parameters of Eq. (3) are shared across nodes in a layer which
results in the familiar locality and positional invariance inductive biases
of a convolutional-type, shape analyser. Scale separation and hierar-
chical representations are also useful for shape recognition [44,45]. In
2D CNNs this is achieved by pooling layers; in GNNs this is achieved
by downsampling of nodes. A common approach is farthest point sam-
pling [46]. The nodes 𝑢 in the aggregation for Eq. (3) are taken from
this downsampled subset, the ‘convolution centres’, while the nodes
𝑣 – for the neighbourhoods – are taken from the original set. This
aggregates the information from a ‘higher-resolution’ point cloud to a
‘lower-resolution’ one, analogous to CNN pooling layers.

3.2. Baseline architecture

To implement a DL system, one needs to arrange layers into an
architecture which can learn from data and output relevant predictions.
The work by Qi et al. [2] presented a number of PointNet++ archi-
tectures for different benchmark tasks; the current work chooses the
architecture proposed for ShapeNet part segmentation [47]. Of the two
segmentation tasks addressed in [2], this is likely the most relevant
to feature recognition due to the use of a global shape descriptor.
Intuitively, the semantics of the shape as a whole should give an
indication of what types of features are present.1

The baseline architecture is illustrated in Fig. 2; it follows a standard
U-Net-like bottleneck architecture [48]. The layer widths and down-
sampling sizes are those proposed for part segmentation in the original
PointNet++ work. Radii of 0.2 and 0.4 are used for the intermediate
convolution layers, with the input point cloud being normalised to a
sphere of unit radius centred at zero. It is worth noting that while
the PointNet++ aggregation function allows for further transformation
after the symmetric function (𝜙 in Eq. (3)), in practice this is not used
(i.e. the identity function is used for 𝜙). Therefore, the MLPs shown
in the convolution section of the architecture correspond to the per-
neighbour transformation, 𝜓 . Furthermore, every MLP layer is followed
by a batch normalisation layer [49] which is itself followed by a recti-
fied linear unit (ReLU) [50] acting as the non-linear activation function.
This is except for the final layer, which has a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function [45]
instead of an activation function to produce a conditional probability
distribution over the possible semantic classes. Lastly, dropout [51]
with probability 0.5 is used in the penultimate layer. This baseline and
subsequent modifications were implemented as graph neural networks
with the PyTorch [52] and PyTorch Geometric [53] libraries.

1 This is the case for real geometries that have been designed by engineers
with intent, however this is arguably lacking from the shapes in the public
machining features datasets.
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Fig. 2. Block diagram illustrating the baseline PointNet++ architecture. Arrangement and width of layers is shown. The bottleneck structure is also shown. 𝑁 is the number of
input points, 𝐷 is the input feature dimension, and 𝐶 is the number of classes.
Fig. 3. Illustration of information flow from b-rep model to triangular mesh to point cloud. The chosen b-rep metadata, 𝐪𝑏𝑥 ∈ R𝐷 , is propagated to associated triangles. The
inherited mesh triangle metadata, 𝐪𝑓𝑥 ∈ R𝐷 , is then also inherited by the sampled points; as well as the unit normal of the triangle, �̂�𝑥.
3.3. Benchmark dataset(s)

As discussed in Section 2, the authors of this work are aware of
four publicly available CAD datasets which have semantic segmentation
annotations. Both for practicality and the opportunity to test the gener-
ality of the proposed modifications, only one of these datasets was used
during the additive study and the rest were kept for final evaluation.

The MFCAD++ dataset was chosen through a process of elimina-
tion. It was deemed that the Fusion 360 Gallery dataset’s labels were
semantically ambiguous; in the sense that the shape does not uniquely
determine the labels of each face.2 Therefore, analysis of model learn-
ing and predictions during the additive study would likely be more
difficult compared to the available machining features datasets. The
dataset from Zhang et al. [11] was not chosen as the primary dataset
since it is only available in their chosen point format - this is not
amenable to the explorations in the current study. Lastly, MFCAD++
was chosen over MFCAD since it was deemed that the former is simply
an overall improvement on the latter. At the time of writing, the b-rep
method presented within the same work [10] remains the state-of-the-
art by default — obtaining an overall face labelling accuracy of 97.37%
on the testing set.

The shapes in theMFCAD++ dataset are primarily made available in
the STEP file format. Converting these to a point-based format for this
work is relatively trivial with the use of Python libraries. To minimise
information loss that can occur with b-rep translation [54], the Open-
CASCADE kernel3 was used to load and triangulate the shapes — the

2 This is addressed in their work and is by design — the dataset is meant
to implicitly encode how humans model 3D shapes in CAD.

3 Specifically, using the Python bindings: https://github.com/tpaviot/
pythonocc-core.
4

same one used in [10]. The Trimesh library4 was used to sample points
from these triangular meshes. Briefly, to obtain 𝑁 points, 𝑁 triangles
are sampled (with replacement) using a probability distribution propor-
tional to their areas. A point is then sampled from each triangle using
the method described in [55]. To facilitate neural network training,
and the additive study more broadly, metadata from the b-rep faces
were extracted and propagated to the triangles and the points. Critical
metadata to be retained are the semantic label of the b-rep face which
the mesh triangle and points belong to, and some identifier in order
to aggregate point predictions to b-rep face predictions — for direct
comparison with the b-rep method(s). Other metadata available in the
b-rep model can also be used and is explored in Section 4.4. The data
flow and point cloud extraction is illustrated in Fig. 3.

One could also directly sample points from the continuous b-rep
surfaces, avoiding the approximation of curved surfaces by the mesh
faces. However, the use of the discretised mesh allows the use of
efficient, vectorised implementations. Sampling from the b-rep surface
directly is reliant on the specific CAD kernel.

3.4. Training and evaluation details

A standard neural network training approach was employed. The
ADAM optimiser was used [56] with an initial learning rate of 0.001
and a weight decay of 0.0001. An exponential learning rate scheduler
was also used with a factor of 0.7 and a step size of 20 epochs.
These defaults were adapted from the original PointNet++ work [2]. By
default, the cross-entropy [45] loss across point predictions is used for
optimisation; modifications to this are explored in Section 4.3. Overall
face accuracy was used as the primary performance metric following

4 https://trimsh.org/index.html

https://github.com/tpaviot/pythonocc-core
https://github.com/tpaviot/pythonocc-core
https://trimsh.org/index.html
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the literature. By default, the b-rep face predictions for calculating this
metric were obtained by the modal prediction of the points associated
to the face. Later in the additive study, a modification to the architec-
ture allowed the model to make direct face predictions and these were
used instead when available.

The official training, validation, and testing split provided with the
MFCAD++ dataset was used. After each training epoch, the validation
set was used to track the out-of-sample performance. The neural net-
works are trained with 300 epochs, this was found to be sufficient for
convergence, and the parameters which correspond to the maximum
face accuracy across the validation set were extracted, following the
lead of Colligan et al. [10].5 Due to the stochastic nature of neural
network training, five training runs were done with different seeds for
each configuration to attempt to assess the statistical significance of
any performance improvements. When predictions or other results are
scrutinised at an individual level, the model with the median accuracy
for that configuration was used.

Finally, following best practice [57,58], the validation set is used
during the additive study when assessing the potential improvement of
model configuration and the testing set is reserved for final evaluation
after an ‘optimal’ configuration is chosen. This ensures that no data
leakage occurs; to minimise progressive overfitting and maximise the
generalisation of the model, information about the test data must not
‘leak’ into either model training or configuration.

4. Additive study

4.1. Baseline

To validate the experimental setup, a baseline was obtained using
the defaults described in Sections 3.2 and 3.4. It is also worth noting
that the unit surface normal at each point is used as per-node input
attributes following the literature. An average overall face accuracy
of 86.28% was obtained across five training runs with a standard
deviation of 0.11%. This is slightly higher than the PointNet++ result
reported by Colligan et al. [10] on their MFCAD++ dataset. They
report the use of the example PointNet++ implementation within the
PyTorch Geometric code base which has a different configuration to
the reference architecture described in Section 3.2. This and other
training hyperparameter differences likely account for the difference.
The authors of this work accept this baseline going forward.

4.2. Point coverage

When applying a point-based neural network to CAD models, the
literature often randomly samples a fixed number of points from the
surface of each shape with 2048 points nominally used. However, this
is almost arbitrary when the full continuous surface of the CAD model is
available and is merely a choice left over from the 3D benchmarks that
the point-based methods were originally designed and tested against.6
This configuration is particularly problematic when working with CAD
models since they often have small faces which can be missed by simple
random sampling. For instance, across the MFCAD++ validation set, it
was found that 4.8% of b-rep faces on average are not sampled. Since
the performance metric being used is the labelling accuracy of b-rep
faces, this imposes an upper-limit to the neural network’s measured
performance — these faces are not processed and therefore no predic-
tions are made for them. To illustrate this, the baseline configuration
achieves an average overall point labelling accuracy of 97.67% with a

5 This is not mentioned in their paper but was found to be the case
in their public code release: https://gitlab.com/qub_femg/machine-learning/
hierarchical-cadnet.

6 The ShapeNet part segmentation dataset is distributed as point clouds with
on average around 2000 points per object.
5

Fig. 4. Validation set performance of a single trained model when faced with different
point sampling configurations. Simple random sampling and b-rep stratified sampling
is shown across a range of point cloud sizes. Different maximum point neighbourhood
sizes are also shown. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

standard deviation of 0.03% — significantly better than the b-rep face
labelling accuracy. Additional analysis to illustrate the consequences
of this simple random sampling is given in Appendix A. One way to
combat under-sampling of b-rep faces is to simply use more points. It
was found that the proportion of b-rep faces which are not sampled
decreases linearly with increasing point cloud size — an 𝑅2 value of
0.993.

To assess the effect of different sampling strategies on the b-rep
face labelling accuracy, a single, trained, baseline model was used.
Training models from scratch for each sampling configuration on top
of evaluating performance was computationally impractical because of
the amount of configurations and, critically, the increasing size of the
inputs. Using a model trained on 2048 points randomly sampled from
the surface and evaluating on different sampling configurations acts as
a surrogate for the true performance. This is possible because the shared
weights and the symmetric function aggregation of the convolution
make the point-based GNN fundamentally agnostic to point cloud size.
To control the experiment, the downsampling sizes of the original
architecture are kept constant — i.e. regardless of input point cloud
size, 512 points are sampled to act as the convolution centres at the first
layer. A limited number of models were trained and evaluated on their
‘native’ sampling configuration to validate this surrogate approach —
an 𝑅2 value of 0.989 was found. Details of which configurations were
used to validate are given in Appendix B.

Fig. 4 shows that simply increasing the number of points sampled
from the surface makes a significant positive impact on face labelling
accuracy up to a point. Once ‘full coverage’ is reached, extra points do
not add information — especially when considering the max pooling
aggregation. However, this is not a computationally efficient way to
encode the surface.

An alternative is to perform stratified sampling with the b-rep faces
being used as the strata. Specifically, the desired number of points is
spread out across the b-rep faces based on area, with a minimum of one
point per face being enforced. The process is illustrated in algorithm
1. For each stratum, the standard process described in Section 3.3 can
then be used to obtain the desired amount of points per b-rep face. This
retains the same local point densities of simple random sampling but
ensures that all b-rep faces are sampled at least once.

https://gitlab.com/qub_femg/machine-learning/hierarchical-cadnet
https://gitlab.com/qub_femg/machine-learning/hierarchical-cadnet
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It is worth noting that because of the one point minimum con-
straint (and general rounding up), the point clouds are no longer a
fixed size — the ‘desired’ amount of points is merely an estimate. As
discussed in Section 2, it is common in literature to assert a uniform
size requirement. This is merely an implementation constrain for ef-
ficient mini-batching. With modern techniques developed for graph
learning [53], one is able to perform mini-batching training with
non-uniform sized examples.
Algorithm 1: B-rep stratified sampling
Data: 𝑁 points desired (minimum)

Mesh,  = ( , ), annotated with associated b-rep faces
and other features

esult: Point cloud,  = {𝐩 ∣ 𝐩 ∈ R𝐷}
 = {}
𝑛← 𝑁 ÷ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎()
oreach b-rep face in shape do

′ ← mesh faces associated with this b-rep face
𝑁 ′ ← 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐴𝑟𝑒𝑎(′) × 𝑛
𝑁 ′ ← 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑁 ′)

 ′ ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑃 𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑(′, 𝑁 ′)
append  ′ to 

nd

Fig. 4 also compares the accuracy resulting from using the two sam-
ling strategies, with the green dashed lines being the nominal model
onfiguration. At smaller point cloud sizes, it is observed that b-rep
tratified sampling significantly outperforms simple random sampling
t a given approximate number of points. At larger point cloud sizes,
oth sampling strategies converge towards the same asymptotic value.
his is because the stratified sampling particularly makes a difference
mong the smaller b-rep faces when using a smaller point cloud encod-
ng. When using larger point clouds, missing faces with simple random
ampling becomes less likely and the advantage of stratified sampling
iminishes. Further details of this analysis and empirical results are
iven in Appendix C.

As previously noted, the stratified sampling approach results in
lightly larger point clouds which could be contributing to the accuracy
mprovement. However, it was found that for the smallest point budgets
nvestigated (approximately 512 and 1024 points) there was only an
verage increase in point cloud size from simple random sampling of
% and 1% respectively. This difference further diminishes as point
udget increases.7 The results in Fig. 4 suggest that such a small
ncrease in input point cloud size would not account for the significant
ccuracy improvement observed.

With the aim of collating best practices for applying point-based
NNs, it is worth addressing a common implementation detail found in

he code literature. Because the PointNet++ aggregation uses a radius
eighbourhood, there is no limit to the size of the set 𝑢. Traditional
mplementations adapted 2D matrix convolutions with a 1 × 1 matrix
ize. An upper limit was set on the number of points each convolution
ould use, and radii which had less than this were padded to form the
ense matrix. Neighbourhoods which exceeded the limit were sampled
o a random subset. In theory, this affects the receptive field of the neural
etwork since salient features could be missed by the convolution; al-
eit not as severe as the previously discussed sampling since predictions
re still generated via interpolation and feature propagation for all input
oints. To balance computational and memory restrictions, previous
mplementations treated the maximum size of the set 𝑢 as a dataset
pecific hyperparameter. With the availability of optimised ‘gather and
catter’ operations for GNNs [53], this is less of an issue and one has
ore freedom in choosing the maximum size of 𝑢.

7 Interestingly, the absolute increase stays at around 15 points on average.
6

Fig. 4 illustrates that the upper limit set for the size of 𝑢, 𝑘,
ffects the maximum accuracy achieved similarly to the sampling of
nput points — proportional at lower values and levelling off when a
ufficient value is reached. In addition, peaks in accuracy are observed
hich are more prominent at smaller point cloud sizes. Essentially this

s a balance of enough points to represent the surfaces, while not having
oo much to saturate the neighbourhoods. Further analysis of this is
iven in Appendix D. Since the effect of the maximum neighbourhood
ize can be evaluated after a model has been trained, the authors of
he present work suggest simply increasing the value until maximum
ccuracy no longer increases.

To summarise this subsection, it was found that the optimal sam-
ling strategy in terms of the face labelling accuracy metric (for this
ask and dataset) is to use b-rep stratified sampling with a point budget
f approximately 4000 points. In addition, the upper limit set for the
umber of points in each neighbourhood should be at least 128. The
ollowing subsection will treat this as the baseline configuration for
urther optimisation.

.3. Aligned loss function

The standard loss function used to optimise the parameters of a
ointNet++ style GNN is the cross-entropy loss computed across point
redictions. Effectively, this is optimising for the labelling accuracy of
ndividual points. Each b-rep face prediction is then obtained by the
odal prediction of the points associated to it. Since the performance
etric being used for comparison is the face labelling accuracy, the

radient descent algorithm is only indirectly optimising the metric of
nterest.

Ideally, the cross-entropy loss should be calculated across b-rep face
redictions in the present application. Since the 𝑎𝑟𝑔𝑚𝑎𝑥 operation to

obtain the point predictions and the modal operation are not strictly dif-
ferentiable, one cannot simply use these aggregated face predictions to
calculate the desired loss and backpropagate. The present work instead
utilises an almost multi-task approach.8 Similar to Zhang et al. [11],
an extension to the PointNet++ architecture is made. An additional
prediction branch is added which uses the same feature extractor as
the upstream input. This allows conditional probability vectors to be
predicted directly for the b-rep faces, and a cross-entropy loss can be
calculated on the outputs of each branch.

To be specific, the PointNet++ feature extractor produces latent
vectors for each point. The ‘pointwise’ prediction branch can then
directly apply shared MLPs to this. For the ‘facewise’ prediction branch,
the latent vectors of associated points first need to be aggregated so that
each b-rep face has its own latent vector. An obvious choice for this
aggregation is the same set abstraction being used upstream. Eq. (3)
can be modified to give

𝐱𝑓 = 𝜙
(

max
𝑣∈𝑓

𝜓(𝐱𝑣)
)

(4)

where 𝐱𝑓 is the obtained latent vector for face 𝑓 and 𝑓 are the set of
points associated to face 𝑓 . Subsequent MLP layers can then be applied
to 𝐱𝑓 to obtain differentiable class probability vectors for the b-rep
aces.

Unsurprisingly, it is observed from Fig. 5 that incorporating the b-
ep face cross-entropy loss improves the face labelling accuracy. It is
lso worth noting that the labelling accuracy per point can also be
ncreased using this. Where available, the point predictions to obtain
he point accuracy metric in Fig. 5 were obtained by propagating from
he predictions of the ‘facewise’ branch — i.e. the predicted label of a b-
ep face was also given to its associated points. This was found to give
etter accuracy than taking predictions directly from the ‘pointwise’

8 Strictly, both branches are performing the same task of semantic
segmentation; however, the entities being segmented are different.
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Fig. 5. Box plots showing multiple metrics on the MFCAD++ validation set achieved
by different loss function configurations across five training runs. ‘Epoch extracted’
refers to the training epoch which achieved the maximum validation face accuracy
during training — where model parameters were saved.

Fig. 6. Predicted point labels illustrated as colours, superimposed on the input CAD
model. Both show the same set of points. The left points are coloured based on the
direct predictions from the ‘pointwise’ branch. The right points are coloured based on
predictions propagated from the ‘facewise’ branch. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

branch (for the configurations which jointly optimise those branches).
Fig. 6 illustrates the reason for this — point predictions are of course
more coherent across b-rep faces since all associated points are given
the same predicted label.

In addition, it was found that combining the losses from both
branches actually improves labelling accuracy overall — this agrees
with other multi-task results in literature [59,60]. Simple addition and
averaging of the losses were investigated; it is observed that averaging
the point and face cross-entropy losses gives the best labelling accuracy.
A small grid search was also performed across the relative weightings
when combining the two losses — no noteworthy differences or trends
were observed (more details in Appendix E). Finally, it is also worth
noting from Fig. 5 that the speed of convergence during training
is decreased significantly when using a ‘facewise’ loss in some way.
Intuitively, this is not surprising since the optimiser is now directly
trying to maximise the ‘convergence’ metric — recall from Section 3.4
that the validation face accuracy is being used as the convergence
criteria.

With this, the following subsections will use an average of the cross-
entropy losses from the face prediction and point prediction branches
as the overall loss function to be optimised.

4.4. Input attributes

The final aspect of the data and training pipeline to investigate is
the set of input attributes being used. Eq. (3) can aggregate arbitrary
latent vectors, thus the input point cloud can be generalised to be
 = {𝐩 ∣ 𝐩 ∈ R𝐷}. The contents of the vectors are application de-
pendent, for instance, surface colour can be used when available [61].
However, this paper emphasises their availability since some works in
literature disregard it when comparing against point-approaches. For
instance, Poulenard and Ovsjanikov [31] only use coordinates.
7

The unit surface normal at each point has been used in this paper
so far. A nested, mini additive study has been done to explore whether
the use of any other attributes from the geometries in the MFCAD++
dataset can be used to improve the labelling accuracy of the neural
network. Colligan et al. [10] use shape descriptors extracted from the
CAD kernel which summarise the geometry of each b-rep face. As
illustrated in Fig. 3, this can be propagated to be used as per-point
attributes as well. In addition, this work assigns an arbitrary index to
each b-rep face in a geometry, which is then normalised to the interval
[0, 1], for use as an attribute — with the aim of delineating points
belonging to different b-rep faces.

This nested study progressed by separately adding attributes to a
baseline and observing the resulting accuracy improvement, if any. In
the spirit of gradient-based optimisation, the best performing config-
uration is taken as the baseline for the next stage, where the other
attributes are added again. For completeness, at the first stage, the
baseline is taken as a model which uses only point coordinates — to
confirm the usefulness of surface normals. Fig. 7 shows the results of
this mini additive study.

It can be clearly observed that the use of surface normals is es-
sential for reasonable labelling accuracy. This information implicitly
defines the connectivity of the points and implies the shape of the
manifold surface. Oriented surface normals are extremely useful for
surface reconstruction from point clouds [62], and thus it is unsurpris-
ing that they are also very useful for the neural network’s geometry
understanding.

The b-rep surface type information subsequently resulted in a sta-
tistically significant improvement in face labelling accuracy. This is
perhaps surprising since Colligan et al. [10] reports an almost negligible
effect when removing this attributes in their approach, because of the
imbalance of surface type across the dataset (89.27% of b-rep faces
are planar). However, it was found that the current approach was
able to leverage this information within the point clouds — with an
improvement of +0.89% on the mean face labelling accuracy. This is
especially evident when analysing the labelling accuracy of the model
variants across only non-planar faces — the improvement then becomes
+1.95% when using surface type as an additional attribute.

The last attribute which makes a sufficiently significant improve-
ment is the b-rep face index. As previously stated, this encodes infor-
mation in point space of the sharp separation between discrete b-rep
faces. The model then has this information available throughout the
feature extractor section, rather than only at the ‘facewise’ prediction
branch — which seems to improve semantic segmentation accuracy.
As before, the baseline configuration to be used in the following will
be the best performing so far. The neural networks will now use unit
surface normals, b-rep surface type, and face index as per-point input
attributes.

4.5. Scaling

Now that the current approach has been brought to equal footing
with a specialised b-rep approach in terms of input data and training
signals. It is also interesting to consider scale. The current model
has 1.4M learnable parameters compared to Hierarchical CADNet [10]
which has 9.8M.

The two main ways to scale a neural network is through depth and
width. In the PointNet++ approach, the former refers to the number of
set abstraction modules in the network — a block of neighbourhood
aggregation and subsequent transformation via MLPs. The latter refers
to the number of parameters (‘neurons’) being used in the pointwise
MLPs. Both of these options naturally change the number of parameters
of the network; however, for most point-based approaches, changing
the number of convolution centres could also be seen as scaling the
model while keeping the number of parameters the same. This hyper-
parameter could equally be addressed in Section 4.2, especially because
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Fig. 7. Box plots showing the face labelling accuracy on the MFCAD++ validation set of different configurations. Each plot starts with a base configuration and adds input
attributes separately.
Fig. 8. Box plots showing multiple metrics on the MFCAD++ validation achieved by scaled configurations across five training runs.
it can be changed at evaluation of a trained model. However, modi-
fying the number of convolution centres of the network significantly
increases memory usage — a similarly extensive input coverage study
that includes this would have been computationally impractical. It was
decided that this hyperparameter would be tackled at this stage, after
a sampling configuration had already been chosen. This may not result
in an optimal model configuration – a larger number of convolution
centres may have revealed a different peak in Fig. 4 – but the main pur-
pose of this work is to explore best practices for applying point-based
methods to ‘real’ applications, rather than maximising performance on
artificial benchmarks.

A simple implementation of model scaling was used in this work.
When ‘widening’ the network, only the number of parameters of the
first of the three MLPs in the first layer is specified; with the three
MLPs getting sizes of 𝑀,𝑀, 2𝑀 , where 𝑀 is the number of parameters
of the first MLP. 𝑀 is then doubled for subsequent set abstraction
modules. This geometric sequence of parameter numbers is extended
when ‘deepening’ the model by adding layers.

It is worth stressing that this subsection does not aim to find the op-
timal architecture configuration for the MFCAD++ dataset. One could
perform a full grid search or some other meta-optimisation method of
the network structure to get an optimal and efficient configuration;
however, this is computationally impractical and likely dataset spe-
cific. Instead, this subsection simply serves to illustrate the potential
improvements of scaling this relatively simple network — with the
conjecture that a moderate portion of performance gain of newly pro-
posed architectures can be attributed to scale rather than fundamental
changes, an idea shared by [21].

Fig. 8 shows the performance gain when individually scaling up
the hyperparameters described above. The performance of a model
with all three hyperparameters scaled is also shown. It was decided
that a nested additive study was not necessary here since all three
hyperparameters more or less just increase the model’s representation
power. The ‘All Scaling’ configuration now has 10.9M learnable param-
eters and so is not surprising that it also consistently takes longer to
train. Noting the y-axis range of the face accuracy and point accuracy
8

plots, the significant network scaling has not made a very significant
performance improvement. On the other hand, the ultimate scaled
model (as well as the widened model with 5.1M learnable parameters)
has now surpassed the reported accuracy of Hierarchical CADNet [10]
as measured by the validation set. This is an important result which
supports the hypothesis of the current work — extending generic
methods to fit applications can not only be competitive but surpass
specifically designed approaches. This result is confirmed using the
official testing set in Section 5.1.

5. Results

This section applies the final model configuration resulting from the
additive study, to give evidence that the proposed modifications result
in a general improvement of the approach rather than being specific
to the dataset they were optimised against. An instance of the final
model configuration was trained on each dataset’s training split and
evaluated on their testing splits. Table 1 shows that the modifications
presented in this work significantly improve on the result obtained
by a standard PointNet++ implementation. In addition, the model
configuration presented here obtained state-of-the-art performance on
one dataset and competitive results on another. The potential reasons
for the relatively poor performance on the Fusion 360 Gallery dataset
are discussed in Section 5.3.

5.1. MFCAD++ dataset

Fig. 9 summarises the predictions across the MFCAD++ testing
split of a version of the final model configuration which achieved the
median overall accuracy among the five training runs. The values of
the confusion matrix are normalised across the rows to account for the
imbalance of classes. No significant failure cases are observed across the
semantic classes. The lowest accuracy class, the ‘rectangular through
slot’, is correctly identified 91% of the time — being confused with
the ‘rectangular passage’ class 8% of the time. This and the two other
semantic classes with less than 95% accuracy tend to be confused with
semantic classes which are geometrically similar to them.
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Table 1
Summary table of predictive accuracy of final model configuration against different
segmentation datasets. Accuracy of a standard PointNet++ implementation is also
shown. Results for representative state-of-the-art models are taken from literature.

Dataset Method Face Accuracy
(%)

MFCAD++
Standard PointNet++ 86.28 ± 0.11
Hierarchical CADNet [10] 97.37
Modified PointNet++ 97.79 ± 0.05

Zhang Machining
’Standard’ PointNet++ 97.89 ± 0.10
Zhang Hybrid Model [11] 99.84
Modified PointNet++ 99.12 ± 0.08

Fusion 360 Gallery
Standard PointNet++ 70.78 ± 0.12
BRepNet [8] 92.52 ± 0.15
Modified PointNet++ 84.52 ± 0.13

Fig. 9. Confusion matrix summarising the prediction accuracy of the final model
configuration on the MFCAD++ dataset testing split.

5.2. Other machining dataset

Fig. 10 summarises the predictions of a median model on the testing
split of the machining features dataset from Zhang et al. [11]. It is
worth noting that the dataset which is made publicly available is only
a subset of the one used in their work9; only containing four semantic
labels — stock, pocket, holes, and slots. A version of their model that
was pre-trained on this subset is made available and is used for the
comparison in Table 1 instead of the result stated in the paper.

In addition, the dataset is only distributed as pre-sampled point
clouds. The full surface is lacking, therefore the sampling scheme pre-
sented in Section 4.2 could not be applied. 32 points have been sampled
from each b-rep face regardless of size, resulting in a non-uniform
coverage across the surface geometry as shown in Fig. 11. Note that this
also ensures that no b-rep faces are left unsampled and likely explains
the relatively high result of the ‘standard’ PointNet++ implementation
shown in Table 1. Because the b-rep data is not available for this
dataset, only the surface normals and arbitrary b-rep indices could be
used as per-point input features. Potentially the modified PointNet++
method presented in the current work could achieve higher prediction

9 https://github.com/HARRIXJANG/ASIN-master
9

Fig. 10. Confusion matrix summarising the prediction accuracy of the final model
configuration on the Zhang et al. machining features dataset testing split.

Fig. 11. An example of a geometry from the Zhang machining features dataset
represented as a point cloud.

accuracy given the full b-rep data. However, this result gives evidence
to the generality of the method; it is able to process point cloud inputs
without the need to reconstruct a surface mesh or reverse engineer a
b-rep model.

5.3. Fusion 360 Gallery segmentation dataset

Fig. 12 summarises the predictions of a median model on the Fusion
360 Gallery segmentation dataset [8] official testing split. The most
confused classes reflect the ambiguity within the dataset discussed in
Section 3.3. Specifically, faces which were created with revolve or
cut modelling operations are confused as being the result of extrude
operations.

The model’s performance as illustrated by the overall face accuracy
metric or the confusion matrix could be seen as misleading for this
dataset. Fig. 13 shows examples of model predictions which are tech-
nically incorrect when comparing to the dataset’s ground truth labels.
However, these labels are actually valid — the shape could be equiv-
alently created with the modelling operations shown. Fundamentally,
the ambiguity is present because there is no information about the 2D
sketches used to create the geometries within the dataset.

This is not to say that all the model’s confusion is to do with the
ambiguity — Fig. 14 shows an example of incorrect and non-coherent

https://github.com/HARRIXJANG/ASIN-master
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Fig. 12. Confusion matrix summarising the prediction accuracy of the final model
configuration on the Fusion 360 Gallery segmentation dataset testing split.

Fig. 13. Example of geometries where the model’s predictions are technically incorrect
but are equally valid for creating the shape. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Example of geometries where the model’s predictions are actually incorrect.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

predictions from the model. In this case, the 3D shape has been created
by revolving a sketch in the shape of the number two with a large radius
— as evidenced by the ground truth labels and the change in thickness
across the numeral. A straight extrusion, as predicted by the model,
would not produce this exact shape with the curve in the depth-wise
10
Table 2
B-rep face labelling accuracy of different variations of the Point Transformer approach.
The improvement from the baseline model is shown in green.

Variation Testing split face accuracy (%)

MFCAD++ Fusion360 Gallery

Baseline 84.74 68.15
with stratified sampling 89.76 (+5.02) 72.60 (+4.45)
with b-rep face loss 94.98 (+10.24) 75.57 (+7.42)
with extra point attributes 95.85 (+11.11) 80.46 (+12.31)

direction. Interestingly, the model predicts the side faces towards the
thicker side as fillets instead of the sides of extrusions; perhaps noticing
the curvature.

The b-rep neural network presented by Lambourne et al. [8] is
meant to learn how users design shapes from this dataset. At this time,
it is unclear to the authors of the current work how their model is able
to learn this, but it is speculated that explicit b-rep face topology may
be very important. This is currently lacking from the face prediction
branch of the approach presented here and is left as future work.

5.4. Alternative base neural network: Point Transformer

The majority of the proposed extensions are largely agnostic to
the underlying point-based neural network used. This section pro-
vides some evidence for this by applying the modifications to another
state-of-the-art point-based neural network from literature — Point
Transformer from Zhao et al. [39]. A key characteristic of this approach
is the use of a self-attention mechanism in the 𝜙 function of Eq. (1). For
details of this approach, the interested reader is referred to the original
work.

The implementation found within PyTorch Geometric is used here
which constructs a model with 4.6M learnable parameters, larger than
the default PointNet++ architecture. This was then extended by using
b-rep stratified sampling, b-rep face loss, and extra point attributes
without changing the core architecture or code. Table 2 suggests the
generality of the proposed extensions to other point-based approaches.
It is observed that the labelling accuracy of the Point Transformer
model is significantly improved when properly taking advantage of the
available b-rep data.

6. Conclusions

The current work shows that point-based approaches should not be
discounted when it comes to 3D CAD applications. The point cloud
representation is flexible enough to accommodate the rich information
available within b-rep models. In addition, the graph neural network
formulation seems to be able to learn internal representations that
are sufficiently descriptive as to make useful predictions using sim-
ple Euclidean locality. The additive study explores modifications to
a baseline PointNet++ neural network to give better performance in
CAD applications. The most important can be summarised as three key
concepts: full surface coverage, a loss function aligned with the task,
and taking advantage of b-rep features.

With these modifications, the approach was able to achieve a new
state-of-the-art result on the MFCAD++ machining features dataset.
Outperforming a b-rep neural network which uses ‘hand-crafted’ fea-
tures. It provides competitive results on the machining features dataset
presented by Zhang et al. [11] as compared to a hybrid b-rep/point
approach. And it significantly improves on the performance of the
‘standard’ PointNet++ model on the Fusion360 Gallery segmentation
dataset. Results were also presented which suggest that the improve-
ments afforded by the proposed extensions are not specific to the
PointNet++ network and can be used for other point-based approaches.



Computer-Aided Design 166 (2024) 103629G. Vidanes et al.
The key contributions of this work are as follows:

• Extensions are presented for properly applying point-based neural
networks to CAD tasks involving surface geometry. Particularly
how to take advantage of available b-rep information within the
relatively simple data representation.

• These extensions significantly improve the performance of a
point-based approach. State-of-the-art accuracy is illustrated on
the MFCAD++ machining features dataset when applying pro-
posed extensions.

• Experimental results are provided through an additive study to
document the construction of the system and to explore the be-
haviour and performance effect of individual modifications. This
also serves as best-practices for those seeking to use point-based
networks for their application.

• Significant critique of the literature is presented and evidence is
given to counter some incorrect assumptions about point-based
methods for solid geometry applications.

7. Future work

The additive study explores best practices and presents work to-
wards optimal model configurations; however, it is acknowledged that
there are complex interactions between the various hyperparameters
being studied. An attempt was made to order the improvements in such
a way as to minimise dependencies. Nevertheless, the optimal model
configuration for a given dataset is likely to require a combinatorial
search over all hyperparameters and this is suggested as future work.

Some evidence has been given for the application of the proposed
extensions to other point-based approaches. With the flexibility of the
geometric deep learning framework, other approaches could be studied.
It is left as future work to investigate whether changing other aspects
of the learning systems would be useful for CAD applications. For
instance, changing the neighbourhood selection [40].

A motivation for utilising a geometry-first approach in this work
is to allow for applications outside b-rep models. This has only been
hinted at in the current paper and would be interesting to address in
a future work - specifically, can the same architecture, if not the same
trained model, perform well across 3D domains.
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Appendix A. Baseline model predictions with random sampling

A confusion matrix of face predictions is shown in Fig. A.15. On top
of the 25 machining feature labels, a ‘NULL’ class was also added to
denote the b-rep faces for which the neural network produced no label
— because they were not sampled. Of course the true label row for this
class is empty since this is not an actual ground truth label. However, it
is observed that its column for ‘predicted’ label makes up a noticeable
11
Fig. A.15. Confusion matrix for b-rep face predictions of a trained baseline model
configuration.

Fig. A.16. Confusion matrix for point predictions of a trained baseline model
configuration.

mass of the matrix — the pocket classes seem to consistently be missed
by the sampling and thus obtain a ‘NULL’ label. These classes seem to
also commonly be misclassified as passages, likely linked to the fact that
they are under-sampled — the neural network is shown these classes
less in training. Section 4.2 in the main text seeks to alleviate this.

On top of under-sampling, the simple random sampling is actually
causing the dataset to become more imbalanced overall, from the
neural network’s point of view; illustrated in Fig. A.16 by the significant
proportion of the confusion matrix mass concentrated within the stock
class. While the MFCAD++ dataset has a reasonable class balance when
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Fig. B.17. Evaluated b-rep face labelling accuracy of a single trained model with
different sampling strategies against the accuracy of models trained and evaluated on
the ‘native’ resolution. Data in red are simple random sampling and in blue are using
b-rep stratified sampling. Solid circles use a maximum of 64 point neighbours during
point convolution while starred data use 128. Data points are annotated with point
cloud size. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

measured in terms of b-rep face labels, as reported by Colligan et al.
[10], because the number of points sampled from a face is proportional
to its size, machining features which tend to be larger will be over-
represented in the dataset (and vice-versa). This is further illustrated
by the fact that the pocket and slot classes have a disappearing amount
of true labels in Fig. A.16. Section 4.3 in the main text seeks to alleviate
the effect of this imbalance on the training.

Appendix B. Sampling study surrogate validation

Fig. B.17 shows the correlation of the single trained model surrogate
approach with a limited number of results corresponding to neural
networks trained and evaluated on a given sampling configuration.

Appendix C. Advantages of b-rep stratified sampling for small
point budgets

The stratified sampling particularly makes a difference among the
smaller b-rep faces when using a smaller input point cloud. Whereas
when using larger point clouds, the distribution of points across the
faces created by the sampling methods become very similar. This is
shown for one geometry in Fig. C.18.

Quantitatively, one can define a dissimilarity metric between the
two discrete distributions and compute summary statistics across the
entire validation set for each point cloud size. The 𝜒2 histogram dis-
tance [63] is used here:

𝐷(𝑋, 𝑌 ) =
∑

𝑖

(

𝑋𝑖 − 𝑌𝑖
)2

(

𝑋𝑖 + 𝑌𝑖
) (C.1)

The elementwise natural log of the corresponding distributions are
used for 𝑋𝑖 and 𝑌𝑖, this further biases the metric towards the differences
in the lower values and therefore smaller b-rep faces - a necessity
suggested by Fig. C.18. Fig. C.19 confirms the aforementioned trend
across the MFCAD++ validation set. Showing that the distribution of
points created by b-rep stratified sampling and simple random sampling
is similar when using large point budgets and very dissimilar when
using small point cloud encodings.
12
Fig. C.18. Histograms showing the number of points sampled from each b-rep face
in a single MFCAD++ example. B-rep faces are sorted in order of surface areas. The
distribution resulting in using b-rep stratified sampling and simple random sampling
are shown side-by-side for comparison. Two input point cloud sizes are also shown for
comparison. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. C.19. Box plots summarising the 𝜒2 histogram distance of point distributions
obtained by b-rep stratified sampling and simple random sampling, across the MF-
CAD++ validation set. For each point budget, each geometry is sampled once with
each sampling method. The two point distributions obtained are then used to calculate
a 𝜒2 metric for each geometry. These values are then used to create the box plot for
each point budget.

Appendix D. Effect of insufficient downsampling neighbourhoods

One can plot the distribution of points being used in the convolu-
tions across the b-rep faces to see the effect of insufficient maximum
size of the set  relative to the total number of input points. Fig. D.20
shows that, for this specific shape and sampling, an upper limit of
64 aggregated points per convolution is sufficient even up to around
eight thousand input points. However, at extreme input point cloud
sizes, the neighbourhood saturation results in multiple faces not being
represented in any of the convolutions. In Fig. D.21, it is observed that
even at medium point cloud sizes, an upper limit of 16 is potentially
not sufficient — one of the small faces is not represented in the
convolutions.

Appendix E. Multi-branch loss weighted combinations

The effect of different weightings for the combination of the cross-
entropy losses from the point prediction and face prediction branches
was investigated using a small grid search. Fig. E.22 shows that there
is no advantage to unbalanced combinations. Interestingly, accuracy
decreases when summing the losses with unequal weightings. It is also
observed that weighted averages do not make a significant difference
compared to standard averaging of the two losses from the prediction
branches.
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Fig. D.20. Histograms showing the number of points from each b-rep face which were
used in at least one convolution, in a single MFCAD++ example. The maximum size of
set  has been set to 64. B-rep faces are sorted in order of surface areas. The input
points were obtained with b-rep stratified sampling. Three input point cloud sizes are
shown.

Fig. D.21. Histograms showing the number of points from each b-rep face which were
used in at least one convolution, in a single MFCAD++ example. The maximum size of
set  has been set to 16. B-rep faces are sorted in order of surface areas. The input
points were obtained with b-rep stratified sampling. Three input point cloud sizes are
shown.

Fig. E.22. Box plot showing the different face labelling accuracies achieved by different
total loss function configurations. The configuration with only pointwise loss has been
omitted for clarity — it is significantly lower than the rest as shown in 5.
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