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Interpretation-driven mapping: a framework for conducting search
and re-representation in parallel to support computational analogy
in design

Abstract

This paper presents a framework for the interactions between the processes of mapping and re-representation

within analogy-making. Developing analogical reasoning systems for use in design tasks requires represen-

tations that are fluid and open to reinterpreting. The framework, Interpretation Driven Mapping, casts

the process of constructing an analogical relationship as requiring iterative, parallel interactions between

mapping and representation. This paper argues that this interpretation-driven approach focusses research

on a fundamental problem in analogy-making: how do the representations that make new mappings possible

emerge during the mapping process? The framework is useful for both describing existing analogy-making

models and designing future ones.

The paper presents the development of a computational model informed by the framework, Idiom, that

learns ways to reinterpret the representations of objects as it attempts to map between them. In order to

demonstrate its feasibility, the results of an implementation of the Idiom model in the domain of visual

analogy are presented. Several analogies constructed by the system are presented as examples.

The Interpretation Driven Mapping framework is then used to compare representational change in Idiom

and three previously published systems. Symbolic, hybrid and connectionist models of analogical mapping

differ widely in the ways they represent and solve analogical problems, but the framework is used to elicit the

similarities between the ways their representations change. By comparing these three families of analogy-

making systems in this way this paper demonstrates that Idiom combines the large scope of possible re-

representations observed in connectionist approaches with the context-specific guidance observed in hybrid

and symbolic approaches.
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1 Introduction

The production of a new analogy involves the construction of a new, often complex, relationship between

two objects that was not previously part of the system’s knowledge (Gick and Holyoak, 1980; Gentner, 1983;

Holyoak, 1996; Hummel and Holyoak, 1997; Hofstadter, 2008). This new relationship, which we call an

“association” is then used to transfer knowledge from the source domain to that of the target (Gick and

Holyoak, 1983; Detterman and Sternberg, 1993; Barnden and Holyoak, 1994; Holyoak et al., 1994; Gentner

and Holyoak, 1997; Robertson, 2000). We concern ourselves with the former process – mapping – which is

integral to both analogical reasoning and related cognitive processes such as conceptual blending (Fauconnier

and Turner, 2003), metaphor (Lakoff and Johnson, 2003), bisociation (Koestler, 1967), simile (Veale and Hao,

2007) allegory (Fletcher, 1964), and inference (Wang, 2009).

Terminological precision in this field often suffers from the ability of many relevant words to refer both

to processes and their results, so we adopt the following definitions throughout this paper. Mapping is the

process of searching a source and a target object for a set of shared relationships on which to base a new

analogy, while an association is the resulting set of relationships. Interpreting is the process of changing

the representation of source and target objects to enable mapping, while a transformation is the resulting

function which produces the new object representations from the prior ones. The processes of mapping

and interpreting operate in parallel, iteratively generating candidate associations and transformations until

a satisfactory pair of candidates – an association and the transformation which enables it – is found. Following

Gentner’s Structure Mapping (Gentner, 1983) we adopt the notion that an association connects a set of

relationships between features of one object’s representation to an analogous set of relationships between

another object’s representation. Analogy depends on compatible relational representations (Doumas et al.,

2008; Penn et al., 2008; Holyoak, 2012). Our focus is on how that representation can be re-interpreted

during and because of the process of analogical mapping, and the effect of this reinterpreting on the resultant

association.

Viewed with this focus, the process of mapping can be considered a search of the space of possible

new relationships between two objects, where a new relationship is defined as a previously undiscovered

commonality. This commonality can be a shared feature, a shared relationship between components, or any

other matching representational structure. Due to the combinatorial nature of a space of possible mappings

the search can be computationally expensive, but conceptually the problem is simple: find matching pairs of

representational elements. Many models of analogy that perform this kind of search exist, with ANALOGY

(Evans, 1964) being a very early example and the Structure Mapping Engine (Falkenhainer et al., 1989) being

a well-known one. These models, and the numerous computational implementations of them, demonstrate
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that locating such shared properties between objects is a solved problem when compatible representations

already exist.

The representation of an object that is useful in a particular analogy-making context may not be the

representation that is most familiar to the observer. Contextually salient features may not be typically

regarded as central to an object’s description, and nor might be the representational structure in which

those features are placed. Consider the case of an architect seeking inspiration from nature in the design of a

stadium in a hot climate. She considers as a source the ladybug, with its hard outer shell (the elytra) covering

foldable wings, and constructs an analogy to the stadium’s retractible roof. A design concept is synthesised

with an outward-opening roof segment that reveals a foldable shade cloth underneath. This example of

analogy-by-design demonstrates that analogical mapping does not necessarily concern the design attributes

that are considered most salient to an object considered in isolation (such as a wing’s ability to grant flight).

It is extremely unlikely that any agent’s default representation of a ladybug considers the transparency of

its wings and the path taken by the elytra upon opening. Two potential approaches to constructing this

analogy exist: either all attributes are available to the agent in all possible representational structures all

the time, or representations are constructed in response to the emerging analogical context, interpreted and

re-interpreted as mapping proceeds. This research develops a model of analogy-making based on notion of

contextual representation: the idea that the hemispherical shape of a ladybug’s wing-covers became salient

only in the context of the form of a stadium.

For an analogy-making model to be an effective component of any computational design reasoning system

it must take account of the representational fluidity and temporally entwined problem framing/problem

solving nature of the design process. To this end we have developed the “Interpretation-Driven Mapping”

framework, which describes the parts of the analogy-making process that focus on the ways representations

change during the search. Exploration in computer-aided design has been defined as transforming the search

space, rather than searching within it(Gero, 1994). Escaping from what was previously thought of as the

space of the possible has also been proposed as a fundamental component of creativity (Boden, 1998). Using

this approach, we develop a framework intended to force new transformations of the object representations

and permit them to influence mapping, and derive both a computational model and a working implementation

from it. This enables our structure-mapping-based model to construct analogies that would not be possible

without this ability to reinterpet. We evaluate our proof-of-concept implementation (and the model from

which it derives) by this capability. Our model is able to construct associations that would not have been

possible in other SMT-based models without specifically crafted representations. As we are forcing new

associations that previously would not have been possible, then this capability serves as a proof-of-concept

of the approach.
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We apply this framework in the construction of a computational model of analogical mapping, Idiom,

and describe several examples generated by an implementation of that model that could not have been

constructed via structure-mapping without interpretation-driven mapping. The implementation of Idiom is

intended to serve as a proof-of-concept of both the framework and model, demonstrating their computational

feasibility and potential as an approach to analogy-making. We then compare the way representations change

in Idiom and three other analogy-making systems, demonstrating the differences of our approach.

1.1 Representational transformation in analogy-making

The driver for a focus on re-representation during mapping is applications of analogy-making in the compu-

tational modelling of design reasoning. Analogical reasoning has been identified as a core component in the

synthesis of new design elements (Goel, 1997) and in creative cognition as a whole (Thagard, 1997; Dunbar,

2001). Increased use of analogical reasoning in design tasks has been associated with both designer expertise

and design quality (Casakin and Goldschmidt, 1999). Design is an iteratively reflective (Schön, 1983) and a

wicked, ill-defined (Rittel, 1987) problem, characterised by representational structures that are highly mu-

table. The problem of making computational analogies in the real world has been called “messy” because

of the dynamic, situated nature of real-world concepts (Rissland, 2006). Design concerns not only concepts

that exist, but hypothetical concepts yet to exist. Creative design has been characterised as occurring only

when the set of design variables that comprise the solution changes during the process, not just their values

or ranges of possible values (Gero, 1990). Analogy has also been observed in use at multiple levels of the

design process, applying to the design problem at hand directly as well as the process being used to solve it

(Visser, 1996; Goel, 1997).

The focus of this research is on how the two objects with initially disparate representations can be rein-

terpreted in such a way as to be compatible for mapping. This parallels the distinction between constructing

analogies and solving them identified in Harpaz-Itay et al. (2006), with the former being characterised by

improved transferability in human subjects. Previous approaches to this problem have focussed on building

representations from sub-symbolic elements (Hofstadter and Mitchell, 1992), iteratively constructing rela-

tional representations (Doumas et al., 2008), reconstructing representations from memory into the current

context (Kokinov and Petrov, 2001), or by activating progressively more abstract concepts (Petkov et al.,

2011). Models of analogy-making in design have focussed on projecting representations into an ontology

that characterises their function(s), and then mapping based on patterns (Visser, 1996; Qian and Gero,

1996; Griffith et al., 1996; Bhatta and Goel, 1997; Griffith et al., 2000), a special case of mapping by abstrac-

tion. This work seeks to define a generally applicable framework for how representations change during the
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process of mapping that can both inform future computational models and serve to compare these existing

approaches to representational transformation.

2 The interpretation-driven mapping framework

Constructing representations suitable for analogy in a complex, creative domain such as design is a complex

task. At the heart of this complexity is a chicken-and-egg question: an association cannot be found without

a representation that supports it, and yet whether a representation contains mappable elements cannot

be determined without searching. Assuming the unavailability of representations that express the relations

encapsulated within both objects in a compatible fashion, neither representation nor mapping can completely

precede the other and they must take place interactively and in parallel. We develop a framework for

conceptualising analogy which centres on this parallel, iterative re-interpreting. The central premise of our

framework is that the current state of mapping should inform future representations, and the current state

of representation should inform further mapping.

Given symbolic representations of a source and target object, we model how those representations change

over the course of the mapping process. We focus on this component of the analogy-making process to

investigate how the context of searching for a mapping between source and target affects their representations.

To facilitate this focus we consider representation change during mapping separately from representation

construction prior to mapping. The latter has long been considered a central component of analogy-making

and incorporated into models (Koestler, 1967; Wolstencroft, 1989; Chalmers et al., 1992; French, 2002), we

focus on the former as a distinct but equally important consideration. This focus on representational change

during mapping echoes the discussion on ontological mismatches in (Davies et al., 2003).

We propose a framework, “Interpretation-driven Mapping” (IDM), for describing the mapping process

that incorporates this notion of representational transformation. In this formulation (and using interpreting

is dependent on candidate associations, i.e. how representations change depends on the progress of the search

for mappings, and mapping is dependent on candidate transformations, i.e. how mappings are searched for

is dependent on the progress of the search for representational changes. Our framework’s name derives

from this interaction: mapping is interpretation-driven and vice versa. As a consequence of our desire for

generality in this framework we do not place any constraints on how the objects are represented, how their

symbolic representations are initially constructed, what constitutes a satisfactory pair of candidates, or what

happens to the association/transformation pair once it has been found.

Prior approaches to re-representation during analogical mapping include the minimal ascension method

for extending Structure Mapping in Falkenhainer (1990), in which non-identical relationships can be consid-

5



ered contextually mappable only when they have a common superordinate in the hierarchy of relationships.

This is similar to the ontological approach used in Qian and Gero (1996), where relationships are mappable

if they perform the same function, and to that used in McDermott (1979) and Davies et al. (2003), where

attributes are abstracted iteratively until rendered mappable. Such approaches can be extended to leverage

relational hierarchies from external sources like WordNet, as in Holyoak and Thagard (1989), or from hier-

archies inferred from large text corpora, as in Turney (2008). Our iterative strategy for re-representing and

mapping is similar to that adopted in Yan et al. (2003), although the mechanisms for interpreting in IDM

are more general than those proposed in that work.

The IDM framework, Figure 1, highlights the interactions between the re-representation of objects and

the search for mappings. The perception process(es) that are precursors to the interpreting/mapping cycle,

as well as the transfer process(es) that follow it are included for illustrative purposes only: IDM makes

no assumptions about those processes. We acknowledge transfer’s crucial role in analogy-making (Winston,

1978; Gick and Holyoak, 1983; Hall, 1989; French, 2002), and its absence is a matter of scope, not of exclusion.

IDM’s focus is the iterative and cyclical relationship between mapping and interpreting.

Perception

Interpreting

Mapping

Transfer

objects
(sensory)

association

transformation

analogy

Interpretation-driven mapping (IDM)
Analogy-making

candidate 
transformations

candidate 
associations

objects
(symbolic)

Figure 1: The Interpretation-driven mapping (IDM) framework (centre) embedded in a model of computa-
tional analogy. IDM addresses representation construction and parallelised search for mappings and object
re-interpreting.

It has been argued (Chalmers et al., 1992; Kokinov and Petrov, 2001; French, 2002) that the perception of

analogues-to-be is not a precursor to the search for mappings but a concurrent process. The IDM framework

supports and extends this notion, with representational change during mapping being its principal driver.

While the “Perception” process in Figure 1 operates prior to the processes of the framework, this sequential

and discretised depiction allows us to focus on how representations change during the mapping process. We

separate the processes acting to produce the representation of an object that exists when mapping begins

(“Perception”) from the processes that act to change the representation of that object during mapping

(“Interpreting”) based on their roles only, and make no assumptions about the similarity or difference in
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their mechanisms. We also refrain from stating that the symbolic representation which is present at the start

of mapping is in any way “untransformed” or “canonical”, based on literature in embodied, constructivist

and situated cognition (Clancey, 1997; Schacter et al., 2000; Mahon and Caramazza, 2008) that disputes the

existence of such Platonic conceptualisations. The initial representation is merely the representation existing

at the time mapping begins, and the basis for representational transformations applied during that process.

The IDM framework does not prescribe analogy-making completely, it is a framework for the interac-

tions between representation and mapping, not a framework for the whole of computational analogy. The

framework also does not make any assumptions about the nature of the mapping and interpreting processes

or the representation of objects, transformations, and associations. This distinguishes it from previous ap-

proaches, such as the VAE model (Sowa and Majumdar, 2003), which utilise a similar structure but limit

possible transformations. The framework addresses the “which-came-first?” question in representation in

analogy-making by positing that the new relationship between objects and the representations that enable it

arise out of a simultaneous, interactive process. Using the principles of IDM it becomes possible to describe

how any computational analogy-making model incorporates representational change into mapping. While

other models were not derived from our framework, framing analogical representation in this way can enable

scrutinisation and comparison of otherwise disparate systems. The three core principles of the framework

described, and the questions that arise from them when inspecting an analogy-making model through the

lens of IDM, are as follows:

• Mapping can be conceptualised as a search for an association between source and target. Constructing

a new association (a set of shared relationships) is a search through a space of possible associations.

Mapping is an iterative process that produces and evaluates candidate associations. From this principle

two questions arise when viewing a model through the lens of IDM:

1. What bounds the space of valid associations constructible by mapping?

2. What causes an association to be selected by mapping?

• Interpreting can be conceptualised as search for a transformation of source and target. Constructing

representations that will be used in the association produced by mapping is a search through a space of

possible transformations (to be applied to the initial object representations). interpreting is an iterative

process that produces and evaluates candidate transformations. From this principle two questions arise

when viewing a model through the lens of IDM:

3. What bounds the space of valid transformations constructible by interpreting?

4. What causes a transformation to be selected by interpreting?
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• Interpreting occurs in parallel with mapping. The two processes operate simultaneously, with candi-

date transformations affecting mapping and candidate associations affecting interpreting. From this

principle two questions arise when viewing a model through the lens of IDM:

5. How do candidate transformations selected by interpreting affect mapping?

6. How do candidate associations selected by mapping affect interpreting?

3 Idiom: a computational model derived from the IDM frame-

work

Idiom is a computational model of the association-construction component of analogy-making based on

the IDM framework. Idiom demonstrates the feasibility of the the principles of parallel search and re-

representation, and is so named for its ability to construct and operate on non-literal representations of

objects. The model describes one way representations can change during the construction of an analogy,

and how those changes both affect and are affected by the search for mappings. Idiom provides one possible

set of answers for the six questions raised at the end of Section 2, although they are by no means the only

answers possible.

Interpretation-driven mapping involves two bi-directionally interactive processes; mapping (or more gen-

erally the search for solutions) and interpreting (or more generally the re-framing of the problem). The

Idiom model adds a third process: Perception, by which the representations comprised of object features

and the relationships between them are constructed from the sensory representations initially observed by

the system. As an instantiation of the IDM framework Idiom outputs a new association (a set of shared

relationships between the source and target objects) and the representational transformation under which

that association exists.

3.1 Model overview

We develop a symbolic representation of the three processes which comprise Idiom – perception, interpreting

and mapping. A high level view of Idiom, Figure 2, shows the symbols associated with each of the processes.

Our model of representational change in analogy-making begins with the model observing sensory repre-

sentations of two objects. We do not treat the “source” and “target” objects differently in this model as in

the portion of the process we are modelling the two are interchangeable. We refer these objects as “sensory

representations” to emphasise that there is no veridical representation of any analogue, only observations

made through the system’s perceptual faculties. The symbols used to represent the Idiom model are as
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perception

interpreting

mapping

candidate
associations
a ∈ A

objects
o1, o2

evaluation function selected association
awin

object graphs
g(o1),g(o2)

candidate transformations
& transformed graphs
t ∈ T, τ(g(o1)),τ(g(o2))

selected transformation
twin

p

q
m

i

Figure 2: The three processes of Idiom, showing the symbolic representations of their inputs and outputs.
Idiom is a computational model that instantiates the IDM framework

follows:

a is a candidate association. An association a ∈ A is an ordered nonempty list of pairs of
features, with the first of each pair being a node in τ(g(o1)) and the second being a node in
τ(g(o2)).

awin is a candidate association that has been evaluated as satisfactory under the evaluation
function

q
−→, leading to the Idiom model ceasing its search.

A is the set of candidate associations being considered by the mapping process.

g(o1), g(o2) are the graph representations of the two objects that result from perception.

o1, o2 are the sensory representations of the two objects.

t is a candidate transformation.

twin is the transformation that was applied when a satisfactory association was discovered.

T is the set of candidate transformations being considered by the interpreting process.

τ is a candidate transformation that has been applied to the graph representations.

τ(g(o1)), τ(g(o2)) are the graph representations after the active transformation has been applied.
i−→ is the process of interpreting that uses the current association candidates to generate new

ways to transform the graph representations, and then selects one transformation to apply
to the graphs. See Section 3.4 for details.

m−→ is the process of mapping that searches the interpreted graph representations for associations
based on Structure Mapping Theory. See Section 3.3 for details.

p
−→ is the process of perception that constructs graph representations comprised of features and

relationships between them from the sensory representations. See Section 3.2 for details.
q
−→ is an evaluation function which can be applied to associations.

The model’s perception process,
p
−→ constructs the graph representations used in search, and can be rep-

resented as (1). Graph representations of objects in which nodes are features and edges are relationships

are a commonly adopted representation in analogy-making (Gentner, 1983; Holyoak and Thagard, 1989;

Hofstadter and Mitchell, 1992; Kokinov and Petrov, 2001) although by no means the only possible represen-

tation. We adopt them in Idiom to demonstrate one possible route to implementing representational change,

although the IDM framework makes no such representational assumption.
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p
−→ := o1 → g(o1), o2 → g(o2) (1)

The model’s mapping process,
m−→ searches for associations between graph representations, and can be

represented as (2). As input it takes the transformed graph objects for searching and the set of candidate

associations for updating. In Idiom the Mapping process is dependent only on the current active transfor-

mation and its affects on the graph representations. This is a simplification of the IDM framework, in which

mapping is reliant on the set of candidate transformations, allowing multiple transformations to influence

mapping simultaneously, rather than a winner-takes-all approach used here. We denote the set of candidate

associations after an iteration of the mapping process as A′ to indicate it has been updated. Idiom follows

the Structure Mapping Theory (Gentner, 1983) definition of analogical mapping, in which a mapping ex-

ists between a common subset of relationships between the features of the objects, although we reserve the

word “mapping” for the process. As in Section 2 we refer to the shared subset of relationships between

features that results from mapping as an “association”. We embed Gentner’s theory in a system where the

graph representations are iteratively transformed by an interpreting process in parallel with the search for

mappings.

m−→ := τ(g(o1)), τ(g(o2)), A→ awin ∨A′ (2)

The model’s interpreting process,
i−→, uses the set of candidate associations to construct new ways of

transforming the graphs and selects one of them to apply, and can be represented as (3). As input it takes

the object graphs and the set of candidate associations for use in generating new transformations, and both

the current active transformation and the set of candidate transformations for searching and evaluation. We

denote the active transformation and set of transformations after an iteration of the interpreting process as

τ ′ and T ′ respectively to indicate they have been updated. Transformations act on the graph representations,

and may include the addition or removal of nodes, or the addition, removal or relabelling of edges. New

transformations are generated based on what changes could improve the performance of associations in

A according to the same success measure used to select candidate mappings,
q
−→. Transformations are

generated, evaluated and stored, with the most promising transformation at each point in time becoming the

active transformation τ that is applied to the graphs. This characterisation of analogical mapping as being

transformation-dependent echoes the definition of similarity as “representational distortion” (Hahn et al.,

2003; Hodgetts et al., 2009).

i−→ := g(o1), g(o2), A, τ, T → T ′, τ ′, τ ′(g(o1)), τ ′(g(o2)) (3)
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Associations can be evaluated by
q
−→ under any transformation, allowing the system to iteratively improve

its candidate associations based on the available transformations and its candidate transformations based on

the available associations. A candidate association may specify erroneously mapped feature pairs (those that

form graphs not connected by any shared relationships within their respective objects, or those containing

nodes that do not exist under the current active transformation). These invalid shared associations are

ignored by
q
−→.

Mapping and interpreting both operate incrementally, with each incrementally updated set of candidate

associations A being the basis for an updated τ , which is then in turn the basis for an updated A and so on.

This iterative interaction implements the fundamental principles of the IDM framework. Below we describe

the three processes in more detail.

3.2 Perception

The perception process in the Idiom model,
p
−→, takes low-level sensory representations of a form appropriate

for the domain in which it is implemented and constructs from them the graphs of features and relationships

used in mapping. To construct graph representations
p
−→ extracts features from the sensory representations,

clusters those features into concepts, constructs relationships between features based on their sensory and

conceptual contexts, and then compiles the features and their relationships into graphs. Details of the

perception processes are particularly affected by the choice of an implementation domain, and in this model

specification we adopt an abstract framing to maintain broad applicability. The six processes that make up

perception, Figure 3, are:

• Feature detection identifies and describes elements of the sensory representation which become the

features of the object on which analogies will be based. Feature definitions are domain specific.

• Concept recognition classifies features into known conceptual categories based on a domain specific

similarity function.

• Concept generation constructs new conceptual categories from the features that were not able to be

classified. The set of known concepts is updated with these new categories.

• Typological relationship construction describes relations between features based on the concepts that

they instantiate, for example between two features that are instances of similar concepts.

• Topological relationship construction describes relationships between features using spatial information

from the sensory representations. The space in question may be literal (as in a spatial relationship
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like “above” or “beside”) or it may be a conceptual space (Boden, 2003; Gärdenfors, 2004) in which

spatial relationships have a metaphorical meaning.

• Graph construction translates the relational information into appropriately formatted edge labels,

converting, rounding and grouping relations into labels and expresses the representation as a graph for

each object where features are nodes and relations are edges.

o1, o2

g(o1), g(o2)
Feature

Detection

Concept
Recognition

Concept
Generation

unrecognised features

Concepts
conceptual 
representation

relational 
representation

known 
concepts

featural 
representation

Graph 
Construction

Typological Relation
Construction

Topological Relation
Construction

Figure 3: The structure of the perception process of our model. The sensory representations are converted
into featural, conceptual, relational and finally graph representations.

Feature detection acts on the sensory representations o1 and o2 to extract a set of features. A “feature”

is a notion specific to the domain in which Idiom is implemented, and may be any element of the object,

either a discrete component or a description of some aspect of the whole. For example, in a musical domain

a feature might be a phrase of music, while in a visual domain a feature might be a shape. These features

are not present in o1 and o2, which are of a more primitive nature, such as the sequence of samples making

up an audio file in the case of the former example or the matrix of pixels making up an image in the case of

the latter.

Each feature has a description embodying its properties, which is represented as a list of attribute/value

pairs the nature of which is domain dependent. The model requires that it be possible to calculate the

similarity between two features for the purposes of categorisation, but otherwise makes no assumption of

the nature of features or their representations. Features are the nodes in the graph representations used by

Idiom, and the remainder of the perception process concerns the construction of the relationships between

them that make up the edges in those graphs.

Concept recognition is one of the two processes involved in clustering the feature representations into

conceptual groups for the purpose of inferring typological relationships between them. Concept recognition

attempts to place the features extracted by feature detection into known categories, which we refer to as

“concepts”. A concept is a region of the space of possible features, and the concept recognition process deter-

mines which of the features observed in the objects belong to existing concepts. The set of known concepts
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persists over multiple iterations of the Idiom association-construction process. Features not determined to

be an instance of an existing concept are passed to the concept generation process.

Concept generation is the second of the processes involved in classifying features by their conceptual

categories, and occurs after the concept recognition process has completed. Those features which were

not classifiable within the current conceptual hierarchy are placed into new concepts as needed. The first

time the Idiom model runs this by necessity occurs with all concepts. After both concept recognition

and concept generation have operated on the feature representations all features will have been tagged as

members of at least one conceptual category. The concept-tagged feature representations are then used in

the construction of relationships between features, with the conceptual information being used to determine

typological relationships and the featural information being used to determine topological representations.

Typological relationship construction produces relationships between features based on the conceptual

categories into which they have been placed. A relationship consists of an ordered pair of features and a

relation that connects them. The Idiom model makes no assumptions about the structure of this relation

other than that it expresses some property of the second feature in the pair, the ‘destination feature’ in

relation to the first feature, the ‘originating feature’. Typological relationships express relations between

the concepts two features instantiate, for example “the originating feature instantiates the same concept as

the destination feature”, “the originating feature instantiates a similar concept as the destination feature”,

or “a concept instantiated by the originating feature’s is a parent concept of one instantiated by the des-

tination feature”. These relations can have any data structure or content as determined by the nature of

the relationship construction processes in an Idiom implementation. It is expected that in implementing the

relationship construction processes of Idiom it would be necessary to specify a set of typological relationship

types and the means by which they can be constructed.

Topological relationship construction produces relationships between features based on the structure of

the sensory representations. They are identical in structure to typological relationships, consisting of an

ordered pair of originating and destination feature along with the relation that connects them. However, the

relationships between features described by topological relationship construction concern not the concepts

instantiated by those features but the properties and context of those features within the sensory represen-

tation. Relations are expressed relative to the originating feature to increase their generality and enable

mapping. For example, a topological relationship could express that “the destination feature is above the

originating feature”, “the destination feature is twice the size of the originating feature”, or “the destination

feature is a component of the originating feature”. Whether these relations describe a physical topology, a

compositional hierarchy or some other structure depends on the domain in which Idiom is implemented.
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Graph construction compiles into a graph the features extracted by the feature detection process with

the relationships from by the typological and topological construction processes. The features become the

nodes in each object’s graph and the relations that connected them become edges. The descriptions of the

features are not directly used in mapping, and all information about them is encoded relatively through the

edge labels. The resulting structures are directed (due to the originating/destination feature separation),

labelled (due to the relations attached to each edge) multigraphs (in which two nodes can be connected by

multiple edges expressing different relations). The two graph structures are then searched based on Structure

Mapping Theory (Gentner, 1983): features in the source and target that share a pattern of relationships can

become part of an association. In accordance with the IDM framework Idiom performs this search whilst

iteratively reinterpreting the object graphs to enable otherwise-impossible associations.

3.3 Mapping

The mapping process in the Idiom model,
m−→, searches the graph representations provided by

p
−→ in the context

of the transformations applied by
i−→. Mapping and interpreting iteratively search and transform the graph

representations until a suitable association is constructed. An individual iteration of the mapping process

produces an updated set of candidate associations on which the next iteration of the interpreting process

can operate. Mapping operates on the principles of Structure Mapping (Gentner, 1983), searching for sets of

relationships between features within the individual objects that form shared patterns between the objects.

For example, two objects may both have a pattern of features connected by a series of “immediately above”

relationships, and an association could be constructed between those two patterns. The two processes that

make up
m−→, Figure 4, are:

• Association search generates new candidate associations based on shared relationships between the

transformed source and target graph representations. While there may not be a sufficient pattern of

such relationships in the untransformed graphs, the transformation acts to facilitate better associations.

• Association evaluation evaluates the patterns of relationships found by association search using the

quality measure
q
−→. Each candidate receives an evaluation via that measure, with evaluations over

a threshold resulting in an association being deemed suitable. If a suitable association is found the

process returns a solution, completing this run of the Idiom model. If no suitable mapping is found

the set of current candidates is returned for use by the interpreting system in potentially choosing a

new active transformation.

Association search discovers associations – sets of pairs of features which can be considered analogous

– by searching for shared relationships in the transformed graph representations. This is computationally
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Search

Association
Evaluation

Candidate
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associations

τ(g(o1)), τ(g(o2))

Figure 4: The structure of the mapping process of our model. The two transformed object graphs are
searched for associations that are suitable under the evaluation measure.

modelled in Idiom as a search of the graph representations for edge-labelled isomorphic subgraphs1. This

search applies not to the graph representations produced by perception, g(o1) & g(o2), but to those graphs

reinterpreted in the context of the current active transformation τ . In the case of the very first iteration

of the association search process τ defaults to a null transformation in which the graphs are unchanged,

meaning that initially g(o1)⇔ τ(g(o1)) & g(o2)⇔ τ(g(o2)).

Association evaluation determines the value of each candidate association as measured by
q
−→. While

the specific measure is domain specific, Structure Mapping requires that these edge labels (which represent

relationships between features of the source and target) must match exactly for them to be considered a

valid component of the mapping.
q
−→ can be implemented to evaluate mappings in a variety of ways, including

measures based on the size (in nodes) of the mapped subgraph or measures based on the domain-dependent

meaning of the features or relationships within that subgraph.

Graph representations within Idiom can contain multiple edges between the same two nodes. Associations

which map a pair of nodes within the source to a pair of nodes within the target must map at least one of

these edges to be valid, but need not match all of them. For example assume a group of features within

one object are all the same size (expressed in topological relationships between them) and all instantiate the

same concept (expressed in typological relationships between them). Within the second object is a group of

features that all share the same size, but instantiate different concepts. The association evaluation process

would find an association between these two groups to be valid based on the shared size relationships even

though there were unmatched “same concept” relationships. This is the advantage of reducing complex

relations to a set of simple relations each expressed on its own edge. The unmatched relationships could be

associated in the context of an appropriate transformation, but not without.

The mapping process performs one iteration of the search for and evaluation of candidate associations

and updates the set of candidates. If a candidate association a is discovered which scores sufficiently highly

1Complete maximum subgraph isomorphism search is a computationally intractable problem(Garey and Johnson, 1979;
Kann, 1992), but here approximate solutions are acceptable.
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at
q
−→ then the Idiom model terminates, returning a and τ . Otherwise

i−→ is executed and the iterative cycle

of searching and transforming the graph representations continues.

3.4 Interpreting

The interpreting process in the Idiom model,
i−→, uses the current set of association candidates produced by

the last iteration of
m−→ to determine a new active transformation from among the candidates. To do this

i−→

constructs, evaluates and applies transformations. There is no requirement that the active transformation τ

change with every iteration of the process, but it has the possibility to do so. The three processes that make

up
i−→, Figure 5, are:

• Transformation search constructs new transformations by searching the current set of candidate asso-

ciations for what could make them successful.

• Transformation evaluation considers all transformations in the current set of candidate transformations

against the candidate associations to determine which should be the active transformation τ .

• Transformation application applies the newly updated active transformation τ ′ to the graph represen-

tations of the source and target objects, reinterpreting them and affecting the next iteration of the

mapping process.

τ, g(o1), g(o2)
Transformation

Search
Transformation

Evaluation

Candidate
Associations

Candidate
Transformations

current candidate transformations new (ranked) candidate transformations

new (unranked) candidate
transformations

Transformation
Application

τ´

τ´(g(o1)), τ´(g(o2))

Figure 5: The structure of the interpreting process of the Idiom model. Transformations are generated
from candidate associations and added to the current set of candidate transformations. From this set one is
selected as the active transformation τ and applied to the graph representations.

Transformation search is the process by which new transformations used in interpreting are constructed.

A generate-and-test approach is used to create transformations that would make associations in the current

candidate set more successful at mapping between the two objects. Transformations are applied to the

graphs being searched by
m−→. Each transformation must be general enough to be applied to any object graph

possible within the domain(s) being used in analogy-making, although each transformation need not have
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an effect on all graphs in the domains. This open-ended definition enables transformations to be constructed

specific to the implementation of Idiom, but possibilities include the deletion, addition, consolidation or

splitting of features, as well as the addition, deletion or relabelling of edges. Implementations of Idiom may

govern these graph changes in any way, such as executing a modified version of the Perception process to

produce altered representations. In this case the transformation would, in effect, be one of
p
−→. The only

requirement is that the result of the transformation be a transformed graph.

As the purpose of interpreting is to render non-matching relationships matching, the simplest transfor-

mation(s) involve the relabelling of graph edges. An example of such relabelling would be a “spatial reversal”

transformation, under which all topological relationships involving “in front of” were treated as equivalent to

“behind”, and so on. This transformation would parallel the “opposites” slippage in Copycat (Hofstadter and

Mitchell, 1992) that enabled analogies such as “ABC : ABD is like XYZ : WYZ”. An alternative approach to

defining transformations is the adjacent node combination of the VAE model of analogical reasoning (Sowa

and Majumdar, 2003).

The model does not specify the process by which transformations are constructed, although examples

include: 1) transformations are constructed that would improve current highly-performing associations ac-

cording to the measure
q
−→, and 2) transformations that have been successful in previous iterations of the

model (potentially on different analogy problems with different sources) are re-added to the current set of

candidates. The former option requires working backwards from what is necessary to improve current asso-

ciations, while the latter requires remembering transformations from past problems. The model also does

not specify the conditions under which reinterpreting should be initiated – when the current transformation

warrants further exploration and when it should be changed. Potential questions include whether seeking

a transformation is always appropriate when no associations are found, or whether some objects should be

just considered incompatible. While the Idiom model presented in this paper represents one approach to

these questions the issue remains an area of active research in interpretation-driven systems.

Transformation evaluation produces an evaluation of all the candidate transformations in T by applying

them to the candidate associations in A and measuring their quality with
q
−→. The specifics of this process

are left to an implementation of Idiom, but given the computational complexity of testing for subgraph

isomorphisms implementations randomly sampling from A for each transformation seems preferable to com-

paring all possible pairs of a ∈ A and t ∈ T . The process for this would involve randomly selecting a

subset of “test” candidate associations from A for each candidate transformation in T . This selection could

be weighted by the quality measure
q
−→(a),∀a ∈ A, which would already have been calculated during the

association evaluation process.
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Once an evaluation of the quality of each transformation in T is known one candidate is selected to be τ ,

the transformation applied to the graph representations to influence mapping. This selection process may be

deterministic (selecting the transformation with the highest quality after evaluation), stochastic (selecting a

transformation with probability based on quality evaluation), or may involve some other selection heuristic(s).

Transformation application applies the current τ (either new or retained from the previous increment)

to the graph representations g(o1) & g(o2). After the new transformation is applied this increment of the

interpreting process completes and the mapping process takes over to continue the search for mappings.

4 Constructing associations with Idiom

We have developed an implementation of the Idiom model that demonstrates its feasibility and serves as a

proof-of-concept of the IDM framework. We present selected results from the implementation showing its

capacity for transforming representations and constructing associations.

4.1 Implementing Idiom

The implementation of Idiom described in this paper is in the domain of visual analogy, constructing rela-

tionships between images and drawings based on their spatial properties. The Idiom model is more generally

applicable than this implementation, but it is intended to serve as a proof-of-concept of both Idiom and the

IDM framework from which it is derived. Associations constructed by this implementation will be based

on perceptual relationships, such as geometrical or spatial relationships between shapes. This system can

perform mapping on shapes similar to those of CogSketch (Lovett et al., 2009b,a; Forbus et al., 2011), but

our focus is on representational transformation and the integration of representation and mapping, rather

than on relational abstraction. Visual associations are an important component of many design processes

and offer a rich variety of potential design domains.

The implementation takes visual representations of objects in the form of 2D vector drawings, extracts

features from them, constructs relationships between those features and then makes analogies using those

relationships. The definition of a “feature” in this implementation is a minimal closed shape, and features are

described using the outline of these shapes, not their weight, colours or other styling. These shape features

are categorised into groups based on the similarity of their outlines using a centroid-radii method for shape

description proposed by Tan et al. (2003).

The shape-based featural representations are analysed for a variety of topological relationships, including

relative scale, orientation, position and the sharing of edges and vertices. Typological relationships include

conceptual similarity and conceptual identity, although this implementation uses exclusive concepts – each
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feature belongs to exactly one concept. This simplifies the perception process allowing us to focus on the

interpreting process that is the focus of the IDM framework. Similar topological relationships are aggregated

into discrete categories like “slightly smaller” or “approximately 10◦ difference in orientation”.

The implementation uses a genetic algorithm to search the transformed graph representations for con-

tiguous subgraphs. Based on the approaches used in Wang and Zhou (1997) and Cross et al. (1996), the

genotype is a set of node:node connections between object graphs, and the fitness function is based on the

number of connections that are valid (our quality measure). Transformations applied to the object graphs

change the fitness landscape by affecting the validity of these mappings. An evolutionary computation ap-

proach was adopted as it produces populations of candidates simultaneously (for use in interpreting) and

can have its objective landscape easily changed between generations. A population of candidate associations

between the source and target are created randomly and then evolved, with the quality measure
q
−→ acting

as the fitness. Each candidate association in this population is represented by a set of connections between

every feature in the smaller graph to a feature in the larger graph. Many such connections may not be valid

mappings, but these are discarded by the quality measure. The quality measure is based on the size of the

largest contiguous subgraph validly mapped, i.e. the number of features connected by a pattern of shared

relationships in the analogy. While size (in features) is only an approximate measure of analogical quality it

is suitable for this proof-of-concept.

Transformations in this implementation use edge label substitution to re-interpret the object graphs. An

edge label substitution consists of one or more pairs of edge labels (feature-to-feature relations) that are to

be treated as interchangeable for the purposes of the mapping process. This enables interpreting of the kind

“treat X in the source object as if it were the same as Y in the target object”. This gives more interpretive

freedom than the visual analogy approach used in Galatea (Davies and Goel, 2001; Davies et al., 2003; Davies

and Goel, 2003), which applies a fixed set of known transformations to elements of an image.

Idiom’s search for what transformation to apply is based on syntax, not semantics, using the question

“what transformation would improve the mappability of these two objects the most?” This relies on under-

lying syntactic commonality rather than any semantic content about the relationship between relationships.

For example, an object containing a line of shapes of increasing sizes could be associated with another object

containing a line of shapes of increasing orientations. The implication of these implementation decisions is

that when two patterns of relationship share the same structure, but not the same relationships, a transfor-

mation can be constructed to treat them as mappable. The approach is related to the corpus-based label

substitution in EMMA (Ramscar and Yarlett, 2003), where similarity along the dimensions that best de-

scribe a large dataset of examples is used to substitute contextually similar word. Idiom, by contrast with

EMMA, seeks out transformations that can most improve the mappability of the source and target object,
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without reference to their similarity.

The Idiom approach has the advantage of greatly relaxing constraints on what transformations are pos-

sible when compared to previous systems, which allows the construction of a greater diversity of mappings.

It does so at the cost of explicability: transformations are justified based on their effect (enabling a more

complete mapping) rather than their meaning (the relationship between the concepts so transformed). See

Section 5 for details on how Idiom’s re-representation capabilities can be contrasted with other analogy-

making systems.

4.2 Example analogies in visual art and ornamental design

A variety of vector representations of visual art objects, ornamental design motifs and architectural objects

were drawn from images, taking care to select objects which could be meaningfully represented by lines and

shapes. These vector images were provided to the implementation to investigate the feasibility of the Idiom

model in a design domain. Several of the resulting associations are presented here, along with descriptions

of how they were produced by the model. We demonstrate that without IDM a structure-mapping based

system could only have constructed these analogies with specially constructed representations hand-built for

the task.

4.2.1 Example 1

Figure 6 shows the first example of the output of the computational implementation of Idiom. The figure

depicts the vector representations of Object 1 (o1), a Hittite sun symbol, and Object 2 (o2), a French empire

motif, both from Humbert (1970). The thick solid lines - both grey and black - indicate the lines that

make up the object representation itself, with the black lines indicating object features that are part of the

association. The thin solid lines connecting features in Object 1 with features in Object 2 indicate the pairs

of features that have been mapped by the successful association awin. The thick black dashed lines joining

features within each object indicate the relationships between those features that form the basis for the

mapped relationship. Each of these connections is labelled with the relationship it represents. The grey box

at the bottom of the figure contains the current value for the active transformation τ .

In Fig. 6, the seven points of the star in o1 are mapped to the seven petals of one floret in o1, with adjacent

points being mapped to adjacent petals. Each of the adjacent pairs of points in Object 1 are connected by

an “approximately 50◦ difference in orientation” relationship (abbreviated using ∆rot in the diagrams),

while each of the adjacent pairs of petals in Object 2 are connected by an “approximately 20◦ difference in

orientation” relationship. The association was made in the presence of a transformation, τ , equating these
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Object 1 Object 2τ:
~50° Δrot = ~20° Δrot

~20° Δrot

~50° Δrot

~50° Δrot

~50° Δrot

Figure 6: An association produced by Idiom which maps adjacent points of the seven-pointed star in Object
1 to adjacent petals of the top floret in Object 2, based on interpreting the “50◦ orientation difference”
relationships between the star-points to be like the “20◦ orientation difference” relationships between the
petals.

two relationships. Idiom is making the analogy between the star and the floret in the context of treating

those two relationships as alike. Idiom possesses no knowledge about the relative similarity or difference of

the two orientation relationships, and they could just as easily have been one orientation relationship and

one of scale, or any other relational type possessed by Idiom. The transformation that enables this mapping

was selected on the syntactic similarity of the representations of the two objects, which each possessed a

structurally similar pattern of homogeneously labelled edges. Naive structure-mapping would have failed to

construct this association without additional knowledge.

Idiom’s process to construct the association seen in Figure 6 began with the system attempting to map

between the untransformed representations.
m−→ creates (initially by chance) a candidate association, a1, that

maps at least one pair of adjacent star-points to a pair of adjacent petals. a1 is not of any value by the quality

measure
q
−→ as there is no suitable transformation available to equate the two different orientation labels.

i−→

then works backwards to construct a transformation that would increase the value of a1, and one of the

candidate transformations thus constructed is the one shown in Figure 6, which we will call t1. As features

can be mapped using t1 that cannot be mapped without it, it outperforms other available transformations

– including the default null transformation in which the graphs are unchanged – and becomes the active

transformation τ . This transforms the graph representations to treat the 20◦ and 50◦ orientation relations

as alike.
m−→ then adopts a search trajectory to maximises the number of associated nodes given τ = t1. This

produces an association like the one in Figure 6.

Theoretically, if the objects were represented in precisely the right way, the association depicted in Figure
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6 could be constructed without the use of representational transformations. A relationship like “rotationally

adjacent”, or “sharing a common axis of rotation” could produce mappable representations of Objects 1 and

2 for which no transformational process was needed. Alternatively, relationships between relationships, such

as those used in some Structure Mapping Theory based systems (Falkenhainer et al., 1989; Forbus et al.,

1995), could be used to describe the orientation differences in a more general way, and these second-order

relationships would be mappable. However these approaches require significant prior knowledge on behalf

of the experimenters to construct representations of the two objects that feature compatible relationships.

The Idiom method discovers appropriate transformations from regularity in the structure of the object

representations, rather than from compatible relational labels.

4.2.2 Example 2

As a stochastic system, Idiom can produce different results when run repeatedly with the same stimuli.

Figure 7 shows the result of another run involving the same two objects. In this case six of the seven points

of the star in Object 1 are mapped to the two outer-most petals of each floret in Object 2. The difference

in orientation between every third star-point (150◦) is associated with the difference in orientation across

each floret and between each floret, which are both 120◦. The analogy-making system has interpreted these

two different relationships as being alike, transforming different parts of the object representations to the

first example (Figure 6) and producing a different analogy. The parallel interacting processes of
i−→ and

m−→

uncover and map between intra-object shared patterns of disparate relationships. In the case of Figure 7

this is the pattern of relationships between every third star-point and the pattern of relationships between

outermost petals.

For the production of the association in Figure 7 a series of steps occurred that were similar to those

described in Figure 6. A partial association was constructed by chance within the model, a transformation

was generated from it and then
m−→ pursued the best possible association in that interpreted search space. The

stochastic processes involved in the search for both candidate associations and candidate transformations

led the system to a explore a different trajectory to the first example. This example would also have been

impossible to construct via structure-mapping theory without changes in the knowledge structure.

These examples demonstrate that the Idiom model can produce analogies between simple visual objects.

The computational implementation of this model has produced multiple varied outputs depicting associations

that are different in both appearance and substance. It does this by “forcing” mappings between semantically

different relationships based on the underlying syntactic similarities of the objects being mapped, such as

the patterns of 120◦ and 150◦ relationships transformed in Example 2 and the similar pattern transformed

in Example 1. Idiom, and the IDM framework it instantiates, can produce associations that – intuitively, at
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Object 1 Object 2τ:
~150° Δrot = ~120° Δrot

~150° Δrot

~120° Δrot

Figure 7: An association produced by Idiom which maps every third point in the seven-pointed star in Object
1 to the set of outermost petals on the three florets in Object 2, based on interpreting the “150◦ orientation
difference” relationships between the star-points to be like the “120◦ orientation difference” relationships
between the petals.

least – seem like those expected by a human observer, such as those between adjacent petals and adjacent

star-points in Figure 6. Interpreting can also lead to associations that differ significantly from those likely

to be produced by a human (again, intuitively at least), such as the more unexpected association between

outermost petals and every third star-point in Figure 7.

4.2.3 Example 3

Among the vector representations of art and design objects provided to the implementation were a line-art

version of M. C. Escher’s 1938 painting “Sky and Water I” and a nineteenth century wrought ironwork

pattern intended for use in a gate (Cottingham (1824) via Cliff (1998)). An association between these two

objects can be seen in Figure 8, where the four rows of fish which make up the bottom half of Object 3

have been mapped to the four rows of quadrilateral-like shapes in the middle of Object 4. The features of

each row of fish belong to their own conceptual category, as the fish become progressively more abstract

towards the centre of the painting, resulting in a ”similar concept” relationship existing between adjacent

rows. The curved bars which make up the ironwork pattern in Object 4 create a similar pattern, with the

gaps between the bars becoming slightly smaller with each successive row. The Idiom implementation uses

a transformation that equates these two relationships to map between the fish and the gaps between bars.

Figure 8 shows that Idiom can construct relationships between structurally similar representations even

when the relationships involved are disparate and the objects being represented are in different domains.

Not only could naive structure mapping not have constructed this association without additional knowledge,
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τ:
similar concept = slightly smaller

similar concept
slightly smaller

Object 3 Object 4

Figure 8: An association produced using Idiom which maps the triangular pattern of increasingly more
abstract fish in Object 3 to the triangular pattern of increasingly smaller gaps in the gate in Object 4, based
on interpreting the ‘similar concept’ relationship between the fish to be like the ‘slightly smaller’ relationship
between the gaps.

but it is difficult to conceptualise a representation in which the relationships of similarity and scale are

expressed identically. The two relationships are objectively different, but in the context of this association

it is of potential benefit to explore what the world would look like if they weren’t. Using IDM, our system

is capable of mapping a pattern of typological relationships between figures in a painting to a pattern of

topological relationships between figures in an ironwork gate. This result demonstrates the possibility of

inter-domain association using Idiom given symbolic representations of both objects.

5 An IDM-driven comparison of representation change in models

of analogy-making

In addition to serving as a basis for developing models of computational analogy-making, the IDM framework

can serve as a lens through which the interpreting capabilities of analogy-making systems can be described.

The constituent processes of models of analogy can themselves be analogously mapped to IDM’s perception,

interpreting and mapping. An analogy-making model can be described using IDM so long as it exhibits

a mechanism by which previously unmappable object representations can be transformed so as to make

them mappable. By re-framing other systems through this lens we can describe commonalities in the way

they transform representations despite the diversity of methods by which they do so. The IDM framework

asks six questions of an analogy-making model (see Section 2), and we follow this line of questioning for

three extant models and the Idiom model described in this paper. Idiom does not implement transfer and

therefore is not a complete model of analogy-making like the three to which it is being compared, but it
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does instantiate the mapping and representational change components of the analogy-making process that

are under investigation.

The three models used for comparison come from the three paradigms of computational analogy-making

models in French (2002): the symbolic, the connectionist and the hybrid. The canonical examples of each

(according to French) are the Structure Mapping Engine (SME) (Falkenhainer et al., 1986, 1989), Analogical

Mapping by Constraint Satisfaction (ACME) (Holyoak and Thagard, 1989; Spellman and Holyoak, 1992),

and Copycat (Hofstadter, 1984; Hofstadter and Mitchell, 1992). However, the SME is a model of analogical

mapping only and does not incorporate any representation construction or transformation. We compare an

extension of it, Incremental Structure Mapping (I-SME) (Forbus et al., 1994) which incorporates a form

of reinterpretation into the basic SME model. The incremental nature of I-SME addresses the problem of

cognitive plausibility when problem-solvers are exposed to knowledge about potential analogues sequentially,

with new knowledge arriving after the mapping process has begun. I-SME adds new knowledge to object

representations during mapping, and decides in each case whether to extend the existing mapping or construct

a new and different one. We compare I-SME, ACME, Copycat and our Idiom implementation through the

lens of the IDM framework.

I-SME is a general theory of analogical mapping, and thus can map between any symbolic representa-

tion, but the best-known implementation of it, the Minimal Analogical Reasoning System (MARS) solves

engineering problems given a worked example of an analogous problem. This implementation of I-SME

combines basic knowledge about objects, incremental mapping and an equation solver to solve problems. It

starts with an initial match between the objects in the two problems (the solved source and the unsolved

target), and then incrementally extends its representations by generating candidate inferences, evaluating

them, and incorporating the successful ones into its mapping. While the creators of I-SME intended it to be

able to incorporate new external knowledge (such as that provided by a human teacher) during the course

of constructing an analogy, we assume for this comparison that no such external knowledge is available.

I-SME’s new knowledge will come solely from derivations produced through transfer or deduction.

ACME also maps between symbolic representations of real-world concepts, and is able to construct

analogies like “Socrates is a midwife of ideas”. ACME operates on graph representations of features and

relationships, and constructs mappings by spreading activation through that graph, with simultaneously

active concepts being analogous. This activation is guided by a set of constraints governing what kinds

of properties should be mapped. ACME adds excitatory and inhibitory connections between features to

constrain mappings between those features to be similar in structure, similar in meaning, and relevant to

the current context. ACME operates by simulating these constrained networks until they settle into a low

energy state, in which simultaneously activated concepts are both structurally consistent and semantically
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similar.

Copycat finds analogical connections within the domain of letter strings, solving proportional analogies

of the form “abc → abd, ijk →?”. Copycat has knowledge of concepts relevant to the domain – such

as “group of letters”, “identical letters” and “successive letters” – in the form of a connectionist semantic

network. Copycat builds representations of letter strings out of these concepts using a parallel representation

construction and mapping search process. Copycat operates by a stochastic search of possible representations

of the problem affected by both top-down pressures from the conceptual network and bottom-up pressures

from the letter strings.

Our implementation of the Idiom model (see Section 4.1) finds analogous patterns of shapes within vector

images drawn from ornamental design, architecture and art. Images represented as graphs are iteratively

searched for mappings by a genetic algorithm and transformed by an interpreting process driven by rein-

forcement learning. While our Idiom implementation is the only one of these four systems to have been

constructed according to the IDM framework, we demonstrate that IDM framework is sufficiently general as

to scrutinise and compare the mechanisms of each system.

The first question posed in the IDM framework is “What bounds the space of valid associations con-

structible by mapping?”, Table 1.

Defining the space of valid associations
I-SME ACME Copycat Idiom
Features can be as-
sociated when they
share relations.

Concepts within the
graph are associated
when simultaneously
active.

Strings of letters can
be associated when
they share represen-
tational structure.

Features can be
associated between
shapes when there is
a shared pattern of
relationships.

Table 1: Answers to the question: “What bounds the space of valid associations constructible by mapping?”.

The mapping search spaces used by I-SME, ACME, Copycat and Idiom all share a commonality: they

map only between features that are contextually identical. They differ in their representations, search

strategies, and definitions of “context”, but each will map patterns of matching features. Copycat, I-SME

and Idiom follow the structure-mapping approach of mapping relationships between features rather than

features directly. ACME maps features but its process for doing so can be thought of as contextually equating

the relationships between them as identicality, and thus can also be thought of as mapping structures of

relationships.

The second question posed in the IDM framework is “What causes an association to be selected by

mapping?”, Table 2.

The four models can be divided into two categories based on how they terminate the map-
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Selecting candidate associations
I-SME ACME Copycat Idiom
Successful asso-
ciations transfer
knowledge that
fulfills a goal.

An association is
selected when an
energy minimum is
reached.

An association is se-
lected when a solu-
tion to to the propor-
tional problem can
be generated.

Associations are se-
lected when the qual-
ity measure reaches
a pre-defined thresh-
old. In the im-
plementation this is
based on the number
of mapped nodes.

Table 2: Answers to question: “What causes an association to be selected by mapping?”.

ping/interpretation cycle: those that implement transfer that those that do not. The two models that

include a transfer component, I-SME and Copycat, terminate when they can successfully transfer knowledge

from the source to the target and solve the provided problem. This makes the selection of an association

problem-based. The two models that do not include a transfer component, ACME and Idiom, use alternate

quality measures. ACME terminates based on local maxima, by reaching a state where no further mapping

can occur. Idiom terminates based on a specified suitability criterion that is specified according to the prob-

lem domain. The Idiom implementation presented in this paper uses a measure of quality derived from the

association structure (size in nodes) as it does not implement a transfer or problem-solving component.

The third question posed in the IDM framework is “What bounds the space of valid transformations

constructible by interpreting?”, Table 3.

Defining the space of possible transformations
I-SME ACME Copycat Idiom
Candidate inferences
are constructed that
influence the next
mapping increment.

Constraints apply
pressure from con-
textually related
nodes to force dis-
parate nodes to
map.

Transformations
equate the mean-
ing of disparate
concepts and af-
fect the trajectory
of representation
construction.

Theoretically any
graph transforma-
tion. Implemented
as equivalency
between pairs of
edge-labels in proto-
type.

Table 3: Answers to the question: “What bounds the space of valid transformations constructible by inter-
preting?”.

Three of the four systems, ACME, Copycat and Idiom, implement transformation as contextual equiv-

alency between relationships. They differ, however, in how and why these transformations are generated.

In ACME and Copycat relational equivalencies are enabled by pre-specified connections between concepts,

although in both this affects representations indirectly. In ACME this enabling connection is in the form of

constraints favouring certain mappings over others, and in Copycat certain concepts are “slippage”-capable
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in specified circumstances. The connectionist nature of ACME means that these equivalencies are speci-

fied in a distributed but deterministic fashion, while the hybrid connectionist/symbolic nature of Copycat

means that while equivalencies are specified symbolically they only affect representations through parallel

distributed (and stochastic) processes. In Idiom the interpreting process is symbolic and stochastic as in

Copycat, but all pairwise equivalencies are possible as in ACME.

I-SME differs from the other three systems in that transformation does not take the form of contextual

equivalency between features of the object representations. I-SME can receive new knowledge between

mapping steps either from an external source like the experimenter or through its own deduction or inference.

These transformations do not contextually treat objectively different properties as contextually similar, but

instead represent an evolving objective knowledge base. For example, I-SME could be implemented with a

set of knowledge about cats (that they are kept as pets by humans, that they have fur, etc) and use that to

add knowledge to an object once it had established that the object belonged to the class “cat”. Transforming

between levels of representational abstraction like this is not the same as contextual equivalency between

objects – a cat is not a pet only for the purposes of this mapping, it is always both a pet and a cat.

The fourth question posed in the IDM framework is “What causes a transformation to be selected by the

interpreting process?”, Table 4.

Selecting candidate transformations
I-SME ACME Copycat Idiom
Successful transfor-
mations bring the
agent closer to its
goal states.

Conceptual acti-
vation spreading
along constrained
relations determines
the transformations
produced.

Pressures from ac-
tive representations
(bottom-up) and ac-
tive concepts (top-
down) affect what
transformations oc-
cur.

Selected transforma-
tions improve the
quality measure

q
−→.

In the prototype
implementation this
means they enable
larger associations.

Table 4: Answers to the question: “What causes a transformation to be selected by the interpreting process?”.

Two of the four analogy-making models, I-SME and Idiom, select transformations based on how they

improve the associations they act on, while the other two, ACME and Copycat, use contextual influence.

I-SME’s selected transformations (the inferred attributes that extend its representations) improve candi-

date associations based on progress towards the goal state, while Idiom’s selected transformations improve

candidate associations based on the measure of association quality. Both I-SME and Idiom use syntactic

properties of the object representations to motivate transformations: the transformations that are generated

make candidate associations stronger according to each system’s goal. As Idiom can construct any pairwise

equivalency between relationships this means it is driven by structural similarity within object relationships

– shared patterns of different relationships that can be equated by transformations. I-SME, by contrast, is
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limited in its transformations by what it can derive from existing knowledge using rules and inference, and

cannot contextually change the meaning of its representations, only add to them.

ACME and Copycat select their transformations using the effect of the current task context. In ACME

every node exerts influence – however small – on every other node’s activation and thusly what it is analogous

to. In Copycat representational elements beget more like them, but there is also influence exerted by active

concepts, and active concepts spread their activation to similar concepts in the same way as ACME. Copycat’s

transformations (referred to as “conceptual slippage”) occur only in the right combination of conceptual

activations, in contrast to ACME’s transformations which occur as the sole, iterative mechanism by which

analogies are constructed.

The fifth question posed in the IDM framework is “How do candidate transformations selected by inter-

preting affect mapping?”, Table 5.

Effects of candidate transformations on mapping
I-SME ACME Copycat Idiom
Mapping search ap-
plies to transformed
objects directly.

Mapping and In-
terpreting are not
separate – associ-
ating between two
features and trans-
forming them to
be equivalent is the
same operation.

Transforms the
meaning of nodes in
its conceptual net-
work, which affect
representation con-
struction and thus
mapping search.

Mapping search ap-
plies to transformed
objects directly.

Table 5: Answers to the question: “How do candidate transformations selected by interpreting affect map-
ping?”.

While the cause and scope of their transformations are very different, I-SME and Idiom both use trans-

formations that directly change the representations being searched. This change then affects the search

trajectory by re-defining the problem space – what was once mappable may now not be, and vice versa.

ACME and Copycat, while they both use spreading activation among conceptual networks to trigger

their transformations, have very different processes for how those transformations affect mapping. In ACME

the network of nodes and relationships between them is the only representational structure present, and

transforming the meanings of those nodes (expressed as the context of simultaneous activations) is both the

mapping process and the interpreting one. This equivalence between transformation and mapping reflects

the core of the connectionist approach: “meaning” exists only in context, and thus both transformations of

meaning and solutions to problems are embedded in distributed structures. While this may seem to violate

a comparison of this system with the others under the IDM framework, note that it is only the last two

questions which are difficult to answer in ACME, and their answering still proves valuable for understanding
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the system.

The sixth and final question posed in the IDM framework is “How do candidate associations selected by

mapping affect interpreting?”, Table 6.

Effects of candidate associations on interpreting
I-SME ACME Copycat Idiom
Candidate associ-
ations determine
which rules can
apply.

Mapping and In-
terpreting are not
separate – associ-
ating between two
features and trans-
forming them to
be equivalent is the
same operation.

Candidate asso-
ciations influence
conceptual activa-
tion and and thus
can bring about
transformations.

Candidate associ-
ations are used to
evaluate transforma-
tions, thus affecting
which one(s) apply.

Table 6: Answers to the question: “How do candidate associations selected by mapping affect interpreting?”.

Each of the four systems provides a very different answer to this question. In I-SME the rules of symbolic

logic apply – transformations can only occur when there is a clear logical precedent. In ACME, again, the

question does not have a clear meaning, as transformations and association candidates are both expressed as

conceptual activation patterns. In Copycat there are indirect effects on transformation brought about by the

current candidate associations: existing representational fragments affect conceptual activation, and certain

patterns of conceptual activation trigger transformation. In Idiom the relationship is more direct: candidate

transformations are evaluated based on how they improve current candidate associations, meaning that the

evaluation of the former is contingent on the state of the latter.

6 Comparing representation change in Idiom to models of

analogy-making

The comparison in Section 5 illustrates two points. The first is that the IDM framework serves as a useful

lens through which to view analogy-making models and compare the ways by which their constituent pro-

cesses interact. IDM is an effective comparative tool for computational models of analogy-making that have

historically been categorised as divergent, particularly along the “symbolic” – “hybrid” – “connectionist”

axis. The second point is that the Idiom model occupies a niche distinct from previous computational models

of analogy-making. We argue that this niche makes Idiom particularly apt for analogy-making in design.

Idiom would formally be best classified as a symbolic system, although this may be contingent on how

the interpreting and mapping processes are implemented as it would be possible to do so in a connectionist

way, making Idiom a hybrid system. We use the six questions posed when viewing the four analogy systems
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according to the IDM framework to illustrate these differences and their advantages in a model of analogical

design reasoning.

Idiom’s space of possible associations (Q1) is defined according to Structure Mapping: representational

structures connected by relations, with analogical mappings arising from shared patterns of relations between

objects. The representations used in Copycat share fundamental similarities with those of Idiom and structure

mapping, with features (the letters) mappable when they are connected by relational structures (letter

groups, etc). Idiom’s selection process for candidate associations (Q2) is likewise comparable to those of

other systems – those that feature transfer processes evaluate according to system goals, while those that

do not evaluate according to features of mapping. These similarities show that mapping in Idiom and the

IDM framework is comparable to the notion of mapping as expressed in other models, and that the same

problem (analogy-making) is being solved in each approach.

Where Idiom’s approach begins to diverge is in the space of possible representational changes during

mapping (Q3) and how those changes are selected (Q4). Symbolic models like I-SME typically utilise logical

inference as the mechanism for representational change when transformation during mapping is possible at

all. Idiom’s approach offers more flexibility than I-SME approach in both the construction and selection of

transformations: new transformations can be constructed from syntactical regularities in object representa-

tions, and the iterative stochastic transformation evaluation process is less constrained than inference (at

least in the absence of new external knowledge). The approaches to transformation used by ACME and

Copycat are revealed by the IDM reframing as diametrically opposed: While both model transformations

as contextual equivalency, Copycat has few potential transformations (“slippages”) while ACME allows any

pair of features to transform. Conversely, Copycat’s slippages occur only after specific representational and

conceptual states have been reached, while ACME’s transformations occur constantly as a result of aggre-

gate pressure from the entire representational structure. Idiom, by comparison, permits the same space of

possible transformations as ACME (as in theory any two relations can be equated) while offering the same

guidance in selecting transformations as Copycat (as transformations are only constructed in the context of

specific, favourable representational states). These behaviours have occurred separately in previous models

of analogy-making, but in Idiom they occur together. This shows the strength of the iterative and parallel

approach to interpreting and mapping: everything can in theory be mapped, but local conditions guide indi-

vidual decisions about which transformations to apply. This is of utility in models of design reasoning, where

the ability to maintain ambiguous representations and only hyper-focus situationally has been identified as

a key component of design expertise (Cross, 2004).

The second strength of the IDM framework (and the Idiom realisation of it) is in the centrality of the

interactions between mapping and interpreting. Interpreting in Idiom affects mapping (Q5) by transforming
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the object representations directly, changing the trajectory of the search as in I-SME and ACME. Mapping

in Idiom affects interpreting (Q6) by driving what transformations are constructed – the interpreting process

explores how to improve extant candidate associations in the same way that slippage occurs when the

conceptual context suggests it would be useful in Copycat. The ability to transform representations (and

influence the trajectory of mapping) according to the current state of the mapping process is a noted

strength of both Copycat and Idiom. However, Idiom’s representational structure is domain-general, and its

transformations are syntactically derived, obviating the need to specify a domain- and context-specific set of

potential slippages. The IDM approach allows mapping and interpreting to iteratively influence each other in

a domain-general model of analogy. Permitting this capability outside of the micro-domains that characterise

Copycat (and derived systems) is a significant advancement for analogical design reasoning systems.

7 Conclusion

The way representations change during mapping is a critical component of computational models of analogy.

We have developed IDM, a general framework for describing representational transformation within analogy-

making. IDM focusses on the way iterative reinterpreting occurs in parallel with the mapping process, and

how this process mutually affects and is affected by mapping. This general framework has the capacity to

investigate how other models of analogy-making have incorporated these interactions. By representing other

analogy-making models in terms of these mechanisms we are able to elucidate the similarities and differences

in the way their object representations change during mapping. We argue that this framework is particularly

apt for representing analogy problems for computational design, as the situated, constructive and emergent

nature of design representations (Gero, 1998) requires an approach that supports representational fluidity.

IDM provides a unifying descriptive architecture for comparing the processes used by diverse computa-

tional analogy-making models. Reviews of computational analogy-making spanning the last 25 years (Hall,

1989; French, 2002; Gentner and Forbus, 2011) have identified a number of typicalities in extant models.

These include typical processes in models of analogy (including retrieval, re-representation, mapping, trans-

fer, and evaluation), typical components of the representations used in analogy (such as labelled relational

structures) and typologies of model architectures (connectionist, symbolic and hybrid). The IDM frame-

work introduces an additional way to describe similarities among analogy-making models: their interpretive

capacity and its catalyst(s). It is general enough to usefully describe a broad variety of analogy-making mod-

els. Once a system has been thus described, the IDM framework poses questions about the representational

processes encapsulated in the model and their interactions with mapping. The answers to these questions

provide new insight into how models previously thought of as having incompatible theoretical backgrounds
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– such as connectionist ACME and symbolic I-SME – are alike.

We have developed a computational model of the mapping component of analogy-making, Idiom, that

instantiates the IDM framework. Idiom is specifically designed around the iterative and parallel interactions

between re-representation and the mapping process, and serves as a proof-of-concept of the IDM framework.

Idiom, and the prototypical implementation of it in the domain of ornamental design, demonstrate that

a focus on the changes in representation that occur during mapping can lead to an expanded capacity for

mapping without requiring extensive or specially-built representations. Idiom leverages structural similarities

that underly object representations to transform the relational structures within those representations to

enable mapping. Two objects that may not share any relations may share a pattern of how those relations

occur between their features, and it is from this syntactic level of commonality that Idiom derives its

transformations.

We evaluate our model by its generative capability: it can construct associations which previous structure-

mapping systems could not construct from the same representations. This capability stems from the parallel

interactive interpreting and mapping of the IDM framework. The model is able to construct a variety

of associations from the same pair of objects by using different transformations, and able to construct

associations between relationships regardless of their similarity, permitting cross-domain analogy. We make

no claims as to the quality of the associations produced (beyond the internal evaluation by Idiom of the

number of features they can connect), nor of their utility for a particular task: Idiom is a model only of

the mapping component of analogy-making and produces associations in the absence of transfer. Idiom

and the IDM framework on which it is based represent capabilities that structure-mapping systems did not

previously possess. Their extension to a full model of analogy including transfer and evaluation is an area

of active research.

To illustrate the capabilities of both the IDM framework and Idiom, we compare our implementation

to three analogy-making models, I-SME, ACME and Copycat. Through this comparison, in which all four

models were expressed using the IDM framework, similarities and differences among the models can be

seen. This demonstrates the descriptive power of the IDM framework and highlights that representational

variation during mapping is a central component of analogy-making models. This comparison shows that

Idiom exhibits capabilities previously only observed separately in models of analogy-making – specifically

the ability to contextually guide the selection of a representational change and the ability for a large space of

possible representational changes to be applied. These characteristics, which are made possible by Idiom’s

ability to learn new transformations based on the structure rather than content of the objects it is mapping,

make Idiom particularly suited to the representationally dynamic domain of analogical reasoning in design.
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