Scott Wilson, Norah Lorway, Rosalyn
Coull, Konstantinos Vasilakos, and

Tim Moyers

The Birmingham Ensemble for
Electroacoustic Research

Music Department, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK
www.birmingham.ac.uk/facilities/BEAST/
research/Birmingham-Ensemble-for
-Electroacoustic-Research.aspx
s.d.wilson@bham.ac.uk
norah.lorway@gmail.com
roziz_coull@msn.com
konstantinos.vasilakos@gmail.com
oysterhouse82@yahoo.com
beerensemble@contacts.bham.ac.uk

Free as in BEER: Some
Explorations into
Structured Improvisation
Using Networked
Live-Coding Systems

Abstract: Much improvised music that has developed since the advent of free jazz has been concerned with the
imposition of structure, often through systems of directed improvisation, or through the use of rule-based approaches
(e.g., game pieces). In this article, we explore the possibility of a networked live-coding system as a structural
intervention mechanism par excellence, through the discussion of two pieces from the repertoire of the Birmingham

Ensemble for Electroacoustic Research.

The relationship between live coding and improvi-
sation is generally understood in terms of the latter
being an implicit aspect of the former, or as the
former being a specific case of the latter (see, for
example, the discussion in McLean and Wiggins
2010). Live coding provides one fertile solution to
the problem of interface design for musical perfor-
mance, with rich implications for improvisational
practice. Unlike most computer music performance
systems, which tend to consist of relatively fixed
configurations of graphical user interface (GUI) wid-
gets and/or gestural controllers, “code as interface”
allows radical intervention and reconfiguration of
musical systems while they are running. On the one
hand, it becomes possible to do many previously
unimaginable things; on the other, it is often not
possible to do them very quickly.

In terms of this flexibility at least, live coding
might be seen as an improvisational interface par
excellence, albeit one often lacking in agility and
deftness. Like much post—free-jazz improvisation,
however, the practice of live coding can present
problems in terms of creating formal articulation.
Moreover, as in free improvisation, a substantial

Computer Music Journal, 38:1, pp. 54-64, Spring 2014
do0i:10.1162/COMJ_a_00229
© 2014 Massachusetts Institute of Technology.

54

amount of live-coded music consists of a gradual
flow in which layers are added and subtracted,
usually with some modifications in the interim.
Post—free-jazz improvised traditions have developed
various strategies for dealing with this issue. In
exploring these approaches, we might consider
examples drawn from the works of John Zorn and
Anthony Braxton.

Arguably Zorn’s best-known work, Cobra,
composed in 1984, is—like many of his early
compositions—a “game piece.” It consists of a
number of rules about how and when musicians
may contribute to the piece and interact with one
another. These different “improvisational strate-
gies” are indicated using color-coded cue cards. A
prompter holds these up in advance, so that perform-
ers can prepare, and then cues their activation with a
downbeat (Brackett 2010). Braxton’s “Ghost Trance”
compositions (composed between 1995 and 2006)
consist of a pulse layer (usually notated with a non-
specific clef and lacking details such as tempo or ar-
ticulation) that can be combined with precomposed
materials and improvisation. All three are subject
to a set of (sometimes optional) rules about how to
combine them and a detailed system of directed im-
provisation (what Braxton calls “Language Music”),
which can modify musical materials while in use
(Fei 2001). Braxton (2008, p. 2) refers to these works

Computer Music Journal

as a “unique activity forum,” and they might be
understood equally well to constitute a toolkit for
creating and structuring a performance as to be
compositions in the traditional sense. One thing
that these approaches have in common is the use
of intervention mechanisms to facilitate aspects of
musical interaction that can be difficult to realize
in strictly “free” performance (e.g., coordination,
interruption, and other forms of formal or structural
articulation). Interestingly, both of these examples
allow a certain gap of time between changes being
chosen and being executed, something that live
coding practice sometimes take to extremes.

The concept of freedom in music, and partic-
ularly in improvised music, can be articulated in
various ways, with free jazz (i.e., jazz freed both
from the constraints of precomposed limitations
and from limits on individual expression) represent-
ing only one concrete choice. As in the Braxton
and Zorn examples, the sorts of freedom that we
have chosen to explore in the music we will discuss
in this article are different. Rather than a free-
dom that valorizes virtuosic individual expression
and a radical subjectivity freed from any precon-
ceived musical structure, we explore something
more akin to a social contract—i.e., the freedom
of agents to choose, at least for a time, to limit
their expression within constraints that are mutu-
ally agreed upon and are mutually (and hopefully
musically) beneficial. Intersubjective compositional
limitation is intended to provide a shared space
in which the musical community can craft its
expression.

One might raise the point that this is hardly
unique, and is in fact true of most music-making.
More interesting are the possibilities that “code
as interface” provides, in combination with the
intervention and formal articulation that networked
music systems so superlatively provide. In this
article we will explore some concrete examples of
the possibilities afforded by this configuration. Two
pieces in particular will be discussed. The first,
Telepathic, provides a common formal procedure
and time base. The other, Pea Stew, imposes a limit
on material, which is entirely generated from a fully
meshed audio feedback network interconnecting
the performers.

BEER Basics

In 2011, the Birmingham Ensemble for Electroa-
coustic Research (BEER) began as an exploration
of the potential of networked music systems

for structured improvisation. Working primarily in
the SuperCollider (SC) language (available online at
supercollider.sourceforge.net), BEER uses the Re-
public (de Campo et al. 2012) and, more recently,
the Utopia (Wilson, Rohrhuber, and de Campo
2013) extensions to support code sharing and other
network activity. In both cases we use the JITLib
(Tust in Time Library) classes in SC for basic live
coding functionality. The ensemble varies in size
from three to five players (occasionally augmented
by guests) in performances, and when possible,
performers use individual stereo loudspeaker pairs.
This approach gives each performer a small stereo
field to work within, and differs somewhat from
the more “instrumental” approach taken by groups
such as the Princeton Laptop Orchestra (PLOrk),
which favor single hemispherical loudspeakers for
their instrument-like acoustic dispersion. In some
ways, this provides the spatial advantages of stereo
amplification in that performers can project a field of
sounds, rather than function as a point source, while
avoiding the risk of each performer’s contributions
being made anonymous within the single stereo field
that would be produced by a shared public-address
system. This practice is also reflective of our desire
to move beyond the limits of the instrumental
conception of electronic music software design
that characterizes much laptop orchestra practice.
(Instrumentality has its uses, but why limit yourself
to it?)

BEER has experimented with the common live
coding practice of projecting code (a practice pi-
oneered by groups such as Slub; see slub.org for
video documentation), although we have not done
this consistently. One reason is simply that this
raises additional technical demands, which can be
difficult to meet in some situations. The second is
that, although we appreciate the way in which code
projection can enhance an audience’s experience
by making clearer connections between performer
activity and the resulting sound, it is nontrivial
to implement with five or more performers. We

Wilson et al. 55

feel that some of the existing solutions to multi-
performer code projection, such as periodically
switching between different performers’ screens
(notably by the group Benoit and the Mandelbrots,
see www.the-mandelbrots.de), undermine this effect
somewhat by interrupting an individual’s coding in
progress. We have, however, experimented with an
alternative approach, using a custom class called
BEERWatcher class, which captures and projects
each bit of code as it is executed. This avoids the
interruption problem, but sacrifices the occasion-
ally fascinating aspect of observing a programmer’s
thought process by watching them edit and correct
code before it is executed. In any case, our experi-
ments in this area are ongoing, but it is our hope
that even in cases where we do not project code,
the music itself and other aspects of the performance
experience are of sufficient interest.

As with other improvising live coding ensembles
using the Republic software (e.g., PowerBooks
_UnPlugged, see www.pbup.net/s), the practice of
code sharing is intended to lead to a greater unity
of musical result and to facilitate the creation
of newly improvised material that is sonically or
behaviorally related to what other performers have
already produced.

Compositions (if they can be properly called
that) are developed in workshops and performances,
with the entire ensemble contributing to the
development of what might initially have been
individually designed and conceived systems.

Telepathic

Telepathic is a piece for an unspecified number of
players, which makes use of a networked system to
facilitate coordination and formal articulation. Live
coding performers improvise within the limitations
imposed by this framework.

Implementation
The backbone of Telepathic’s networked system is

a shared master clock, which broadcasts its beats,
tempo, etc., to interested listeners on the network.

56

Figure 1. Networked clock
configuration scheme for
Telepathic.

(Possible small variations in synchronization
and tempo following for each follower clock)

A

Follower clock 1

A\

Follower clock 2

Master clock

\4

Follower clock n

T

Quantization
algorithm

Tempo
algorithm

Each member of the ensemble has a corresponding
follower clock, which attempts to match the master
clock’s tempo. These are implemented using the
Listening Clocks quark, developed by Rainer Schiitz,
Alberto de Campo, and Julian Rohrhuber (see the
discussion in Schiitz and Rohrhuber 2008). This
allows for certain variations in behavior in terms of
how clocks follow and converge, perhaps modeling
an ensemble-like behavior rather than attempting to
maintain strict synchronization. (They provide the
suggestively named parameters “confidence” and
“empathy.”) This allows performers to make use, at
least optionally, of a shared time base, and to easily
schedule events that exhibit rhythmic relationships
to material already playing. An algorithm creates
periodic sweeps to new tempi in the master clock,
which the follower clocks attempt to match (see
Figure 1).

Each performer controls up to three streams of
events. A second algorithm imposes a quantization
process, which aligns all changes in event streams
to multiples of some number of beats (see further
discussion in the next section). As a general formal
principle, this quantization cycle gradually decreases

Computer Music Journal

Figure 2. An example GUI
setup for Telepathic.

® Telepathic Clocks new Ndefscd
© O O & Republic /republic Cepaive Dol nw NoWE

~clockTask.stop:
~glockTask = Task({

leop { ~-masterClock.teleportin,
}) .play (~masterClock) ;
~tempoTask = Task({

wvar offset;

leop({

offset = rrand(40,

\test,

40);

shout here - use tab to send |~)

chat here - use tab to send E[

offset.wait;

rrand{10, 40}};

1}
1 .play;
seconds.

ff~quantTask = Task({
ff war offset, nextQuant;
ff loopi{

1 citizens, 1 servers, 0 synthdefs ~guant = 12; while reading file '/Users/scottw/Library/Applicatien Supp|
n = r.broadcasthddr; requesting synthdefs after joining!
show: IE chat clock Rep: requesting synthdefs from all.
server(s)] show | inform Set[scott |
hdefs request| show | share | ffn = NetAddr ("127.0.0.1", NetAddr langPort);: ERROR: Qt: You can not use this Qr functionality in the cu
['frequest', ‘'scott', ‘'shareSynthDefs' |
events | Pdefs | Tdefs | Number of Devices: 6
scott | ~masterClock = SoftClock.new.permanent_(true); 0 : "Built-in Microphone"
([scott] . 1 : "Built-in Input”
scott id: 4 private: ne 2 : "Built-in Output”
_ f/~masterClock.setMeterAtBeat (~quant, 0); 3 : "Soundflower (2ch)™
//TempoClock.default.initTeleportin, \test, 4); 4 : "Soundflower (l6ch)"
5 : "Greatdy System Audio"
¥.broadcasthddr.sendMsg('/startYourEngines', ~quant); "Built-in Microphone" Imput Device

~nextTempo = thisThread.clock.beats + ocffset;

~masterClock. fadeTempo(0.25 + 2.875.sum3zand + 2.875,

ff this is on default TempoCleck.default, so in

= exception in GrafDef Load: UGen 'MonoGrainBF' not installefs

Streams: 1
0 channels 2

"Built-in Output® Output Device
Streams: 1
0 channels 2

: 0.l.wait;}

SC_AudioDriver: sample rate = 48000.000000, driver's block

SuperCollider 3 server ready (debug build).

Beceiving notification messages from server scott

Resetting recChannels to 10

Shared memory server interface initialized

initTree scott : myGroup should come back. |
Others have to call initTree as well, e.g. by]

no entries yet.

minforminq r.server scott of 0 synthdefs.
sending bytes of:

changed default server to: scott
a NdefMixer
CmdPeriod

4 starting

© Command Line: IFFT

_Ndef.all['scott’]

s Og 434d

0.0dB

~quant = 12;
n = r.broadcastAddr;

//n = NetAddr("127.0.0.1%, -

MO 0§ Metro

over the course of a performance from an initial
value (typically 12 beats) to a value of one beat, after
which the piece is ended with either an extreme
accelerando or an extreme ritardando, which in
either case leads to the clocks stopping at the close
of the piece. A “metronome” GUI indicates the
passage of beats, as well as the current cycle length.
Beats that begin a new cycle are distinguished by
color from other beats. Figure 2 shows the basic GUI
setup.

As noted earlier, BEER performances generally
involve the practice of sharing and modifying
code created by each member. The use of concrete
material (i.e., sound files) in this context can be
problematic, however, because of the particular
way in which the SuperCollider language abstracts
sample buffers and the multitude of ways in which
sound files might be shared. For this reason, we
make use of a custom SuperCollider class called
BEER(ffers. This is essentially a global dictionary that

Wilson et al. 57

allows programmers to look up objects representing
local sample buffers by a label (generally generated
from the name of a sound file). It allows performers
to query the available files. Furthermore, and most
importantly, by abstracting away local file paths,
any shared code that references buffers in “BEERffers
style” is made reusable on any machine. In practice,
we have worked by copying sound files from a
shared folder to a local location and then using
the BEERffers class to manage them. In principle,
however, this approach also allows shared materials
to be streamed over the network, loaded from

a single network share, or acquired in some other
fashion, because it separates reference from location.

Playing Telepathically

Telepathic has one important aspect in common
with some of the works of John Cage, in that
it treats form and content as separable entities
(Pritchett 1996). Because we are free to use different
materials each time the piece is performed (and
do), Telepathic’s identity as a work of art might
lie not so much in the specific materials used in
any given realization, but rather in the common
formal trajectory and likely behaviors imposed
or facilitated (or encouraged?) by the tempo and
quantization algorithms.

These include the following:

1. Rhythmic interaction based on a shared
pulse. In principle, this is not required, but
it is very easy to achieve. The quantiza-
tion mechanism limits when changes in
the stream specifications can occur, but
does not constrain the output of the streams
themselves. Therefore, rhythmic patterns
that do not correspond to the current cycle
length, polyrhythms, and even poly-tempi
relationships (providing a tempo is specified
relative to the master clock tempo) are all
possible and straightforward. In practice,
complex rhythmic behavior may result.

2. Synchronization of mid-Ilevel formal change.
The quantization algorithm makes it very
likely that significant changes in streams

58

made by multiple players will occur simul-
taneously, particularly in the early stages
of a realization when the cycle lengths are
longer. Commonly, live-coding ensembles
rely upon numbers of performers to com-
pensate for the relatively long gestation
period that can be required for setting up a
substantial musical change. Although this
can make performances seem more nimble,
with sufficient change occurring as multiple
performers bring slowly implemented devel-
opments to fruition at different times, as in
free jazz this encourages the emergence of a
kind of “layering” form. The quantization
algorithm inverts this situation by forcing
changes specified in the same cycle to occur
simultaneously, as if by “mind-reading.” In
this sense, it functions in a manner similar
to Braxton and Zorn’s directed improvi-
sation strategies, albeit without the same
immediate intention.

3. A gradual intensification as the piece
progresses. The decreasing duration of the
cycles both increases the rate of mid-level
formal change and decreases the likelihood
of musically meaningful synchronization of
that change. (General alignment of pulse is of
course still possible and likely.) Subjectively,
this tends to result in a perception of
gradual intensification, in a manner perhaps
analogous to the effect of increasing the
rate of harmonic rhythm while maintaining
the underlying pulse in tonal music. We
have found that, as performers become aware
of this trajectory, they come to pace their
patterns of coding to accommodate it. This
feel for changes in a larger-scale rate of
change, as distinct from subdivision of pulse,
has interesting effects on coders’ perception
of their live coding practice, and might find
parallels in things like Javanese gamelan
performers’ experience of changes in irama:

The concept of irama consists of two
aspects: the rate of temporal flow and
temporal density. Temporal density is
the primary factor in irama. It is a process

Computer Music Journal

in which time-space in the structure of
a gendhing [composition] is being
contracted or expanded. A contraction
of time-space means a decrease in the
number of pulsations (i.e., temporal
density) of certain instruments; and
an expansion means an increase in the
number of pulsations (Sumarsam 1995,
p. 156).

4. A likelihood that materials will transition
between rhythm and texture. The changes
in tempi imposed by the tempo algorithm
are randomly determined, and it is not
possible to predict when a tempo sweep
will begin, exactly how long it will last,
or what its end state will be. The tempo
changes are also potentially extreme, with
target tempi ranging from 15 beats per
minute (BPM) to 360 BPM. Thus, a rhythmic
pattern consisting of thirty-second notes at a
60-BPM quarter-note pulse might cross the
threshold of pitch during a tempo sweep.
In practice, it is more common for clearly
distinguishable streams of events to fuse
into a texture in perceptual terms. This also
has an effect on people’s live coding practice,
because thinking “across” that threshold and
maintaining a general awareness of potential
future tempo changes can be musically
rewarded. Conversely, failing to account for
the CPU load implications of a potential
increase in event density can lead to musical
disappointment!

Broadly speaking, we feel that Telepathic is
interesting both in terms of the extent to which
the musical results are a product of the limitations
that the system imposes, and in the ways in which
it changes performers’ relationships with their live
coding practice.

Pea Stew

Pea Stew is a work based on audio feedback,
with an arbitrary number of performers sharing
audio streams over a wireless or wired network.

Performers intervene in the signal chain using
live-coding techniques to process incoming streams.

Precedents

There is of course a large body of “feedback music”
(for an overview, see Sanfilippo and Valle 2013). Of
particular relevance to Pea Stew are works such
as David Tudor’s Rainforest IV, which makes use
of a series of objects that serve as resonators for
electronic signals (in some versions with signals
circulating in “networks” of objects, cf. Driscoll and
Rogalsky 2004); Global String by Atau Tanaka and
Kasper Toeplitz, which uses a wide-area network as
part of resonant system involving a multi-site art
installation (Tanaka and Bongers 2001); SoundWIRE,
a sonification tool which uses network latency as
the delay component in a Karplus-Strong algorithm
in order to make quality of service variations audible
(Chafe et al. 2000); and Toshimaru Nakamura’s “No-
Input Mixing Board” approach, which uses feedback
loops and processing to manipulate sound originally
deriving from circuit noise, rather than an external
source (Meyer 2003).

As is likely apparent from its name, however,
Pea Stew is most immediately inspired by Nicolas
Collins’s Pea Soup. Originally an analogue work, Pea
Soup consists of one or more feedback loops, each
made up of a microphone, a limiter, a phase shifter
controlled by an amplitude follower, filtering, and
a loudspeaker. This creates a “site-specific archi-
tectural raga,” in which feedback is controlled,
and different patterns of pitches emerge due to the
phase shifter changing the resonances of the system
(Collins 2011).

Implementation

Pea Stew uses the JackTrip extension (available
online at code.google.com/p/jacktrip/Jack) to the
Jack audio system (www.jackaudio.org) in order
to share audio streams over a network. JackTrip
requires an individual pair of client and server
“devices” for each connection, which makes con-
figuration non-trivial. In order to simplify setup,
we have written a custom SuperCollider class to

Wilson et al. 59

Figure 3. A Republic-
JackTrip network topology
for four players. An “S”
represents a JackTrip server
device, a “C” a client

device. Each cluster of

(in this case) three devices
represents an individual
node on the network, i.e.,
a performer’s computer.

Figure 4. Signal path for
each player’s computer in
Pea Stew. The numbers at
top and bottom represent
JackTrip receives and

sends from the n other
players. “Other
processing” can include
filtering, enveloping, pitch
shifting, etc.

HH

deal with this. Called RepublicJackTrip, it allows
for the straightforward creation of a network of
audio streams between an arbitrary number of users,
automating the allocation and creation of JackTrip
clients and servers. (Groups of sizes from 2 to 10
have been tested with successful results.) Repub-
licJackTrip implements a fully meshed network
topology (see Figure 3).

In the current configuration, each player runs a
basic processing node that collects and scales the
signals sent from other players. These are summed
and then fed into a delay. The output of this is then
sent to a process based on a fast Fourier transform.
This does the phase shifting a la Pea Soup, but on a
bin-by-bin basis, with each bin’s phase being shifted
according to its magnitude. In testing, this seemed
to allow for more complicated sonic results than a
single phase shift. (“More complicated” refers here
to the greater number of pitches in play—which
may or may not be desirable—and the patterns of
pitch movement. It does not represent an aesthetic
judgment.) The phase shift may be “flipped” by a
performer, reversing its direction, either for all bins,
or on a bin-by-bin basis. Doing this can create more
variety and contrast between different performers’
outputs.

At this point in the signal path, performers
intervene, using live coding techniques to alter the
sound. Processing can be serial or parallel, and, in
practice, we have not limited the sorts of processing
used. The output of this processing is then sent to

60

Mix and scale

v

Delay

v

FFT phase
shift

v

Other
processing

v

Limiter

D
=

@ - (D

a limiter in order to keep the overall signal level in
control.

The output from each player’s processing is sent
to all other performers via the JackTrip connections
and played over one or more loudspeakers (see
Figure 4).

Playing Pea Stew

As an digital audio network lacking inputs, Pea
Stew 1is theoretically noiseless. That means that

a performance cannot rely on system noise as an
initial source a la Nakamura, and the network must
be primed with some signal. We have found low-
level pink noise or impulse streams to be useful for
this purpose. Once the signal is introduced, players
turn up one or more of their inputs until the system
starts resonating, at which point the noise source is
generally removed. Although it is relatively easy to
set the gain low enough at some node to cause the
resonance to stop, in such cases it is generally not

Computer Music Journal

necessary to re-prime the system. Because the signal
is merely inaudible, rather than silent (at least not
until enough time has lapsed that rounding errors
reduce samples to a value of zero), increasing the
gain will cause the signal to return. That said, in
some cases we have found it interesting to inject a
new signal at some point in a performance, as this
may activate new modes of resonance.

Once seeded, a performance involves improvisa-
tion through live processing of the audio stream. In
addition to live-coding techniques, the code for the
basic processing node provides a GUI interface that
allows performers to scale the input from each of the
other players, weighting it to different degrees. This
also allows for the effective reconfiguration of the
network topology in real time, since by muting the
correct inputs any possible topology can be achieved.
Because each connection between players can be
bi-directional or mono-directional, the number of
possibilities is large, and with larger numbers of
performers, two or more isolated sub-networks (per-
haps with signal paths of different lengths) can be
created. In performance, we have found varying the
network topology to be very useful. The GUI allows
for negative gains, i.e., phase inversion of another
performer’s audio stream as it passes that point
in the network. The GUI also allows the performer
to control a number of parameters, such as the lag
time for the phase shift, and the input delay time.
By lengthening the latter, a player can change the
resonance of the system, effectively lowering the
fundamental frequency of all audio paths passing
through that node. The value of the delay time is
initially set randomly, in order to avoid equivalent
resonances between pairs of nodes.

Performers have used a variety of processing
techniques, including distortion and modulation,
pitch shifting, granular techniques, and creating
rhythmic effects through application of amplitude
envelopes. As one might expect, filtering is a very
powerful tool in this context, and can radically
change the output of the system. That said, we have
found it to be a technique that is easily overused,
and small occasional changes can be equally or more
rewarding.

Playing Pea Stew presents challenges somewhat
different from those encountered in normal live

coding situations. The sound produced is truly
collective, and although the output heard at each
performer’s loudspeaker (or loudspeakers) will be
different (often quite surprisingly so), any individual
change made is likely to have an effect on the
entire network, or at least on any sub-networks
of which the performer is currently a part. Even
straightforward processing techniques are rendered
unpredictable (notably because most processing
is recursive along some path), and the experience
has been likened by one member to “trying to
push around a room-sized blob of jelly.” Each
action a player takes has some effect, but it is
often impossible to anticipate exactly what it will
be. It thus differs from Telepathic, which is more
traditional in the forms of autonomy allowed to
performers. (Telepathic could be understood as
several performers working independently within
an agreed structure. Pea Stew might be better
characterized as several performers simultaneously
playing a single instrument.)

Although Pea Stew tends to force performers
outside their comfort zone in terms of the pre-
dictable use of knowledge and skills, the experience
of playing it is often delightful and surprising in its
indeterminacy. The familiar patterns of live-coding
improvisation, in which one usually works with in-
dividually derived and known (or at least somewhat
predictable) material, are broken. The “material” of
a performance of Pea Stew is at once collective and
collectively limited, but derived in such a way that
those limits are not entirely knowable (see Figure 5).
We have found that once one surrenders the aspira-
tion to control one’s musical material (and perhaps
the aspiration towards demonstrable virtuosity!)
working in this way can be most rewarding.

Future Work

Telepathic continues to be refined in workshops
and performances. In particular, we are interested
in extending the capabilities of the system for the
sharing of materials. In a general sense, simply
varying the basic parameters (rates and ranges of
quantization cycles, ranges of tempi, etc.) also
provides plenty of scope for variations on the general

Wilson et al. 61

Figure 5. BEER performing
Pea Stew at the Bramall
Festival of Music.
(Photograph by Aaron
Croston, Birmingham,
UK.)

concept of the piece, and we continue to explore
these possibilities. The piece is currently being
reworked using the new Utopia network music
library (Wilson, Rohrhuber, and de Campo 2013),
which allows for a more modular approach to
networked music applications.

Development of Pea Stew is also ongoing, and has
already involved many hours of “workshopping”
and testing, as well as a number of performances.
In future versions of this piece, we would like to
experiment with several different aspects.

One of these is the imposition/generation of
musical form (most particularly in the sense of
enabling the perception of musical structure),
which, as noted earlier, is one of our major interests.
One possibility for this would be to move through
a number of randomly or predetermined topologies

62

in a piece. Another might be to make use of slightly
different basic processing for different sections. (We
have tried a number of variations in the phase-
shifting algorithm, and they do exhibit different
characters.)

Another possibility would be to allow processing
that is not recursive (i.e., processing whose output
is only to the loudspeakers, and is not sent to
other nodes of the network). Currently this is only
possible in cases where one performer is receiving
audio from the others, but where the others have set
the input from the first performer to zero. Although,
in some senses, this would depart from what we feel
is the collective spirit of the piece, it would allow
performers greater control over their own sound.

One final possibility to explore would be perfor-
mances with large numbers of players. In practice,

Computer Music Journal

we have found four or five to be more satisfactory
(although different in character) than two or three
performers, with a good balance between stability,
complexity, unpredictability, and the ability to influ-
ence the collective result. It seems likely that large
ensembles would further diminish the influence of
individual performers, but would provide more op-
portunities for interesting sub-networks. Network
performance might be a concern, of course, and it
might be worth testing this on a wired network
rather than our more usual wireless one.

We also continue to refine other pieces in our
repertoire and to develop new ones that explore
different concepts of intervention or limitation. One
such work in progress requires performers to live
code a number of streams specified by type, using
categories that need not be mutually exclusive—
for example, “rhythmic,” “noisy,” “melodic,” or
“energetic.” This extends the shared clock and
quantization approaches used in Telepathic by
implementing a control algorithm that determines
which streams generated by which players are
audible at any given moment, in the process
generating characteristic rhythmic structures in
some sections of the piece.

As noted earlier, the question of whether or
not to project code, and how that might best be
done, remains an open one for us. Given the sort of
work we are undertaking, other ways of enhancing
audience experience and perception might also be
worth considering (for example, making imposed
musical structures and points of formal articulation
visually explicit).

Conclusions: Free as in BEER

As noted in the introduction, we feel that a net-
worked music system is a small-scale example

of a useful social contract. As performers and
participants in what is a social—as well as artistic—
activity, we agree to certain restrictions and re-
sponsibilities in exchange for the new possibilities
that arise from that agreement. We have presented
examples of such contracts, in the form of the two
pieces described here; many others are possible.
Limitations, in the form of networked systems,

not only afford us the benefit of things like greater
coordination, but might also free us from our own
limiting habits, forcing us into musical territory
that we might otherwise never have the opportunity
to inhabit. (Again, we find commonalities with
Cage’s desire to avoid the musical limitations of
his own taste; the separation of form and content is
an effective basic tool for this.] A common, if not
particularly nuanced, critique of free improvisation
is that performers often rely upon their “licks” (i.e.,
they are really only free to do what they already
know how to do). Although we feel that this is too
simplistic a description of what actually happens
in instrumental improvisation, we recognize the
danger it describes and that this is equally true of
live coding as a practice.

Live coding does not free us from the limi-
tations of our “instruments” (these instruments
are arguably just more flexible and less specified;
thus, not necessarily a strength). It does afford us,
however, the opportunity to avoid the narrowly
conceived instrumentality that typifies much in-
terface design for live electroacoustic performance,
particularly within the context of laptop ensembles.
To that freedom, we add the freedom to choose to
limit ourselves, as well as our habits, behavior, and
expression—choices that we feel can enhance live
coding as an improvisation practice. We offer the
proposition that we are all free to design tools that
will allow us to enjoy the musical freedom that such
limitation brings.

(Recordings of the pieces discussed in this article
can be found at soundcloud.com/beer-ensemble.)

References

Brackett, J. 2010. “Some Notes on John Zorn’s Cobra.”
American Music 28(1):44-75.

Braxton, A. 2008. Liner Notes to QUARTET (GTM) 2006.
Important Records Imprec184.

Chafe, C., et al. 2000. “A Simplified Approach to High
Quality Music and Sound over IP.” In Proceedings of
the COST G-6 Conference on Digital Audio Effects,
pp. 159-164.

Collins, N. 2011. Pea Soup: A History. Available online
at www.nicolascollins.com/texts/peasouphistory.pdf.
Accessed 12 August 2013.

Wilson et al. 63

de Campo, A., et al. 2012. “Towards a Hyperdemocratic
Style of Network Music.” Paper presented at the 2012
SuperCollider Symposium, 12-19 April, London. (The
Republic quark is available at quarks.sourceforge.net.
Accessed 12 August 2013.)

Driscoll, J., and M. Rogalsky. 2004. “David Tudor’s
Rainforest: An Evolving Exploration of Resonance.”
Leonardo Music Journal 14:25-30.

Fei, J. 2001. Liner notes to Composition No. 247. Leo
Records LR306. Reproduced at www.jamesfei.com/
247 html. Accessed 12 August 2013.

McLean, A., and G. Wiggins. 2010. “Live Coding towards
Computational Creativity.” In Proceedings of the In-
ternational Conference on Computational Creativity,
pp. 175-179.

Meyer, W. 2003. “Toshimaru Nakamura: Sound
Student.” Perfect Sound Forever. Available at
www.furious.com/perfect/toshimarunakamura.html.
Accessed 12 August 2013.

64

Pritchett, J. 1996. The Music of John Cage. Cambridge,
UK: Cambridge University Press.

Sanfilippo, D., and A. Valle. 2013. Computer Music
Journal 37(2):12-27.

Schiitz R., and J. Rohrhuber. 2008. “Listening to Theory:
An Introduction to the Virtual Gamelan Graz Frame-
work.” In Grazer Beitrdge zur Ethnomusikologie/Graz
Studies in Ethnomusicology, vol. 22. Aachen: Shaker,
pp. 131-194.

Sumarsam. 1995. Gamelan. Chicago, Illinois: University
of Chicago Press.

Tanaka, A., and B. Bongers. 2001. “Global String: A
Musical Instrument for Hybrid Space.” In Proceed-
ings of cast0//Living in Mixed Realities, pp. 177-
182.

Wilson, S., J. Rohrhuber, and A. de Campo. 2013.
Utopia Network Music Library. Available online at
github.com/muellmusik/Utopia. Accessed 12 August
2013.

Computer Music Journal

