If Memory Serves: Towards Designing and Evaluating a Game
for Teaching Pointers to Undergraduate Students

Monica M. McGill
mmmcgill@knox.edu
Knox College
Department of Computer Science
Galesburg, IL, USA

Durell Bouchard
bouchard@roanoke.edu
Roanoke College
Math, Computer Science, & Physics
Salem, VA, USA

Chris Johnson
johnch@uwec.edu
University of Wisconsin
Department of Computer Science
Eau Claire, WI, USA

Chris Messom
christopher.messom@monash.edu
Monash University
Faculty of Information Technology
Melbourne, Australia

Michael James Scott
michael.scott@falmouth.ac.uk
Falmouth University
Games Academy
Penryn, Cornwall, UK

James Atlas
atlas@cis.udel.edu
University of Delaware
Computer and Information Sciences
Newark, DE, USA

Ian Pollock
ian.pollock@csueastbay.edu
California State University, East Bay
Department of Art
Hayward, CA, USA

ABSTRACT

Games can serve as a valuable tool for enriching computer science
education, since they can facilitate a number of conditions that
can promote learning and instigate affective change. As part of the
22nd ACM Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2017), the Working Group
on Game Development for Computer Science Education convened
to extend their prior work, a review of the literature and a review
of over 120 educational games that support computing instruction.
The Working Group builds off this earlier work to design and de-
velop a prototype of a game grounded in specific learning objectives.
They provide the source code for the game to the computing edu-
cation community for further review, adaptation, and exploration.
To aid this endeavor, the Working Group also chose to explore the
research methods needed to establish validity, highlighting a need
for more rigorous approaches to evaluate the effectiveness of the
use of games in computer science education.

This report provides two distinct contributions to the body of
knowledge in games for computer science education. We present an
experience report in the form of a case study describing the design
and development of If Memory Serves, a game to support teaching
pointers to undergraduate students. We then propose guidelines
to validate its effectiveness rooted in theoretical approaches for
evaluating learning in games and media. We include an invitation
to the computer science education community to explore the game’s
potential in classrooms and report on its ability to achieve the stated
learning outcomes.

ITiCSE’17, Bologna, Italy

© 2017 ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 22nd Annual ACM Conference on Innovation and Technology in
Computer Science Education, July 03-05, 2017, http://dx.doi.org/https://doi.org/10.1145/
3059009.3059037.

CCS CONCEPTS

«Applied computing — Education; -Information systems —
Multimedia information systems;

KEYWORDS

games; educational; serious; learning; pointers; computer memory;
design; development; research methods; validation framework

ACM Reference format:

Monica M. McGill, Chris Johnson, James Atlas, Durell Bouchard, Chris
Messom, Ian Pollock, and Michael James Scott. 2017. If Memory Serves:
Towards Designing and Evaluating a Game for Teaching Pointers to Un-
dergraduate Students. In Proceedings of the 22nd Annual ACM Conference
on Innovation and Technology in Computer Science Education, Bologna, Italy,
July 03-05, 2017 (ITiCSE’17), 22 pages.

DOIL: https://doi.org/10.1145/3059009.3059037

1 INTRODUCTION

Educators have long used games as platforms for teaching and
learning, with some of the earliest works on the subject appearing
in 1987 [4, 64]. Games tend to possess qualities not typically found
in traditional learning tasks. They often contextualize problems
and situate them within a compelling alternate reality that unfolds
through intriguing narrative, draw more upon a player’s intrinsic
motivations than extrinsic ones, provide structure for deliberate
practice, scaffold activities effectively, while, among other things,
also promote a spirit of free experimentation [18, 28, 99].
Computer science educators face a number of challenges with
respect to educational attainment [49]. Some of these include high
failures rates, particularly in introductory programming [13, 118],
relatively poor retention [11, 46], and a prominent lack of diver-
sity [20]. Game-based learning experiences seem to have the poten-
tial to help resolve some of these challenges [50, 85, 116]. However,
the territory is relatively unexplored, and many of the advantages

http://dx.doi.org/https://doi.org/10.1145/3059009.3059037
http://dx.doi.org/https://doi.org/10.1145/3059009.3059037

ITiCSE’17, July 03-05, 2017, Bologna, Italy

that game evangelists claim remain unrealized in the computer
science education context.

At ITiCSE 2016, a working group convened to survey the land-
scape of existing digital games that have been used to teach and
learn computer science concepts. The group identified and played
over 120 games that had either been released or described in the
literature as means for learning computer science concepts, and
each was analyzed, classified, and mapped to the learning objectives
outlined in the 2013 ACM/IEEE Computer Science Curricula [5].
While more games were found than initially expected, the working
group report [60] highlights several key findings:

o Few games explicitly state their learning objectives;

o Most of the games cluster around one area of the computing
curriculum: CS1;

e Most of the games were classified as belonging to one of
two categories: short-lived proof-of-concept projects built
by academics; or, closed-source games built by professional
game developers;

e Most had not been formally evaluated in any way. Thus,
there is little insight into the effectiveness and suitability
of these games.

Gathering adequate data in order to determine the efficacy and
suitability for use of all of these games is a challenging endeavor.
However, supporting the generation of such insight is likely to
provide considerable benefit to educators, researchers in the SIGCSE
community, and future game developers. Thus, we chose to address
these identified gaps in games for computing education in the
second year. Explicitly, the objective of this second year of the working
group was to identify a suitable approach to the development and
validation of games designed for use in computer science education.

This objective was formed in conjunction with the following two
overarching research questions:

RQ1 How can the design of a digital game be leveraged to scaf-
fold student understanding of, and interest in, the abstract
ideas in computer science education?

RQ2 How can the effectiveness of digital games for computer
science education be validated?

To explore these questions, we developed the following 3 goals
for this year’s working group:

(1) Design and develop a prototype of a game for computing
education that is engaging and relevant for the learners,

(2) Design and develop a prototype of a game for comput-
ing education built upon clearly defined and measurable
learning objectives, and

(3) Provide a framework based on formal educational research
theories for evaluating its capacity to meet those objectives.

Though not perfectly aligned with the overarching research
questions, we note that goals 1 and 2 address (in part) research
question 1, and goals 2 and 3 address (in part) research question 2.

The remainder of the paper is divided into four sections. Section
2 provides a brief background of the challenges and potential limita-
tions of using games to teach computer science. Section 3 provides
a concentrated report focused on our experiences designing and
developing the prototype of the game, including a description of
the game. Section 4 provides a set of hypotheses and evaluation
methods we propose using to evaluate the game for effectiveness.

M.M. McGill et al.

This hypothesis and evaluation model can also serve as a potential
model for others to use when designing research studies to evalu-
ate this or similar games. Section 5 is our plan for future work on
the game, with a call for other researchers to join us in adding to,
remixing, and extending the game.

2 BACKGROUND

Given that the first year of this working group created an extensive
literature review of games for learning and games for learning
computing education, and provides a framework for designing and
evaluating games for computing education, we refer the reader
to our previous work for a more extensive analysis [60]. In this
section, we provide a brief overview of games for learning and a
brief overview of games for computer science education. We also
provide a look at one underserved area of games in computing
education: memory management and pointers.

2.1 Games for Learning

Despite the well-noted motivational pull of video games, a system-
atic review of pass rates in early programming classes suggests
that, compared to lecture-lab courses, the incorporation of a game
into a course does not guarantee improvement [101, 115]. It was
found that games, in terms of absolute improvement, were only
ranked 9th out of the 13 types of educational intervention included
in the study. Instead, those classes with relatable content and col-
laborative elements helped to improve pass rates. It is important
to recognize, however, that there is considerable variation in how
games could be implemented in a course, which may explain the
variance as well as the mix of positive and negative effects. In-
deed, some of these implementations may even have contained
relatable content and collaboration, which could have confounded
the impacts.

The Clark-Kozma debate on media effects highlights and debates
this assumption: that one medium will inherently be better or worse
than another [23, 54, 62, 107]. A game-oriented learning experience,
in and of itself, may not necessarily be superior to all other forms
of instruction. Within educational games themselves, as artifacts,
there is likely to be considerable variance in the effectiveness of
one game design over another. The design of the learning experi-
ence is critical to consider. To this end, games offer advantages in
several key areas such as active learning [41, 120] and formative
feedback [10, 16, 81]. However, these aspects of a learning experi-
ence are not unique to the medium of games-hence, the need for
rigorous validation.

Games are no silver bullet, since it is possible for them to pos-
sess weaknesses in their design. One notable challenge in some
game designs is that the learning achieved within the game may
not transfer to practically useful contexts. This is known as the
Vegas Effect—“learning that happens in games stays in games” [36].
Avoiding this effect demands that transfer be considered in the
design and evaluated using appropriate measurements.

Outside of the games for computing context, an educational
game that exhibited such an effect was Crystal Island [108], a game
intended to help students learn how pathogens work. Rigorous
experimentation did not support the efficacy of the game [6]. The
study claims the data does not support narrative discovery learning,

If Memory Serves

in line with similar criticisms in other media contexts [70]. Extra-
neous story material and unduly onerous interaction methods can
challenge learners with a high cognitive load [61]. The authors go
on to caution against what Meyer [72] describes as a technological-
oriented approach to educational technology, instead advocating a
learner-centered approach.

Even with such a learner-centered approach, however, care must
be taken in the design of games’ dynamics. For example, Spent
Play [97, 98, 100] has an underlying goal of promoting constructive
attitudes about the poor. However, “if playing Spent in the role of
a poor person leads the player to view his or her experiences as
reflecting the experiences of the poor, performing well on the game
should lead players to believe that poor people, like him or her, can
lift themselves out of poverty just by making the right choices. The
player’s controllability beliefs should be intensified, leading to less
liking of the poor”.

Another pitfall can be the difficulty of the core game mechanic.
This relates to poor scaffolding and may block the progression of a
student beyond their particular zone of proximal development [117].
As such, it is important to consider domain-specific pedagogic
content knowledge (see [51, 77]) to balance the challenge of the
deliberate practice and its alignment with intermediate learning
goals with playability.

Moreover, misalignment between learning objectives and activi-
ties within a game is another concern. Core game mechanics that
are “exogenous” do not require any learning to have taken place in
order to progress through the game. This is opposed to “endoge-
nous” where there is direct constructive alignment [15] such that
successful learning facilitates progression through the game [53].

Considering some of the features of existing games for computer
science education [60], it would seem that many have such pitfalls.
Unfortunately, authors such as O’Neil and Perez [84] make clear that
“there is almost no guidance for game designers and developers on
how to design games that facilitate learning”, and work conducted
in recent years suggests such advice remains limited [18, 24, 28].
However, when designing an interactive learning experience, it is
worth considering the volume of research on cognition [71, 103]
and cognitive load [111] in various forms of multimedia [61, 73,
74, 78, 79], some of which is being extended in the games playing
context [61].

2.2 Previous Review of Games for Computer
Science Education

As part of our work undertaken during the 2016 ITiCSE Working
Group, we reviewed over 120 games designed to teach computing
concepts and reviewed several dozen papers related to game-based
learning (GBL) for computing. Each review consisted of inspect-
ing available documentation and commentary and, when possible,
playing the game. Using this information, we categorized each
game with respect to numerous pedagogical and game characteris-
tics [5]. These games were published over the last several decades,
ranging from 1982 to 2016. At the time the games were reviewed,
34 were available commercially, 51 were freely available, the re-
maining were either no longer available or could not be found. In
this section, we provide a general summary of the games and a

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Table 1: Games classified by CS knowledge areas

Knowledge Areas Count
SDF (Software Development Fundamentals) 77
AL (Algorithms and Complexity) 29
CN (Computational Science) 11
GV (Graphics and Visualization) 10
AR (Architecture and Organization) 9
IAS (Information Assurance and Security) 6
SE (Software Engineering) 5
HCI (Human-Computer Interaction) 4
IS (Intelligent Systems) 4
SF (Systems Fundamentals) 3
DS (Discrete Structures) 3
PBD (Platform-Based Development) 2
SP (Social Issues and Professional Practice) 1
PL (Programming Languages) 1

classification of the games in context of the ACM/IEEE Computer
Science Curricula 2013, as shown in Table 1 [13].

We also noted that Hainey [57] found that there is “a dearth
of empirical evidence in the fields of computer science, software
engineering and information systems to support the use of GBL”
Based on our review, our findings supported these claims-we were
unable to find evidence identifying which of these games were
most effective in meeting educational outcomes. Further, this also
prevented us from analyzing and proposing game design frame-
works for CS education that might be most effective across various
demographics.

In addition to a summary of the games reviewed, we provided
in the report a guide to developing digital games designed to teach
knowledge, skills, and/or attitudes related to computer science. This
summary was based on an extensive review of well known and
respected game designers and educational researchers, including
Gee, Hunicke, Lee, and dozens of others [2, 3, 44, 45, 59]. In the
report, we also review the necessary focus on motivation and how
to motivate learners, including a review of Ryan, Rigby and Przy-
bylski’s work, self-determination theory, and more [101]. We refer
the reader to the working group report for a more-in depth litera-
ture review and how this review informed guidelines presented for
designing a game for computer science education [60].

The three primary gaps, which we highlighted in section 1, were
the lack of reporting on the effectiveness of the games, the lack of
reporting on the initial planning of the game (no learning objectives,
scaffolding discussions, etc), and the lack of games outside the
Software Development Fundamentals (SDF) knowledge area.

2.3 Teaching Memory Management and
Pointers

As we searched for an interesting learning objective to tackle within

a game, we considered the topics that we teach as well as those

that other instructors find challenging for learners. In addition
to experiences of those in the group, pointers were commonly

ITiCSE’17, July 03-05, 2017, Bologna, Italy

identified as a candidate threshold concept in surveys of computer
science educators administered by Boustedt et al. [17]. Threshold
concepts, as defined by Meyer and Lind [76], meet the following
criteria: they transform how a student perceives the discipline, they
help the student organize knowledge, and while often difficult to
learn, they are difficult to unlearn. Based on a series of interviews
with students, Boustedt et al. argue that pointers do indeed qualify
for this designation.

A taxonomy of concepts associated with pointers is provided
by Craig and Petersen [30]. They propose and evaluate a concept
dependency map, which we have used to design the progression
of levels in If Memory Serves. They also found students struggled
the most with two concepts: 1) distinguishing between a pointer
(a variable that holds an address) and the address itself and 2)
understanding the relationship between pointers and arrays.

Allevato et al. [9] identify memory management as one of the
most frequent issues their students encounter. Many programming
tools, they argue, provide misleading or unhelpful error messages
for dealing with pointer issues. They therefore developed Dereferee,
an abstraction that wraps around pointers in C++ to detect misman-
agement of memory and provide more helpful error messages. Their
abstraction wraps around the standard pointer operations to iden-
tify 40 kinds of memory violations, including invalid pointer arith-
metic, memory leaks, and dereferencing invalid pointers—perhaps
because they are null, uninitialized, stale, or out of bounds. They
found that Dereferee identified the exact source of 83% of bugs in a
linked list assignment.

Adcock et al. [7] cite continued industry demand for experience
in languages like C and C++ as reason for teaching memory man-
agement. To provide feedback to students, like Allevato et al., they
model each pointer as a state machine that is used to detect and
report illegal and unsafe operations. They found that the most com-
mon errors were dereferences of stale or null pointers and memory

leaks.

2.4 Summary

Several gaps exist in many of the current games for computing
education, including poor scaffolding, misalignment of learning
objectives and in-game activities, lack of clearly defined learning
objectives (or any learning objectives), and lack of evaluating the
game to determine if it increased student learning. It is imperative
that computing education games are designed to address these
games, including the need to motivate and engage learners and to
evaluate the games for effectiveness. To this end, we synthesized
and extended existing guidelines (e.g., [26, 27, 32, 52, 68, 92, 102]—
described further in [60]) and applied them to the creation of a new
educational game for an under served area of computing education,
memory management and pointers. The next section details our
experience designing and developing a prototype of a game during
ITiCSE 2017.

3 POINTER GAME CASE STUDY
In this section, we revisit research question 1:

RQ1 How can the design of a digital game be leveraged to scaf-
fold student understanding of, and interest in, the abstract
ideas in computer science education?

M.M. McGill et al.

We present our experience designing and prototyping a game
to address research question 1 as well as many of the concerns
raised in the previous year’s report. This experience report is pre-
sented in the form of a case study. It provides our rationale and
thought processes throughout the concentrated time spent design-
ing and developing a prototype of the game, If Memory Serves
(http://ifmemoryserves.org). We include a summary of our
team composition, early design considerations and decisions, a de-
scription of the game, including a summary of decisions related to
designing and creating levels, and our consideration of orthogonal
elements related to gameplay.

3.1 Team Composition

To provide context to our work, the seven members of our group
have extensive experience teaching thousands of undergraduate
and graduate students throughout a variety of computer science
and game development courses. In addition to general introduction
to computer science and interactive media courses, several in our
group have taught courses covering computer architecture and
data structures in C++, both of which include significant work with
pointers.

Everyone on our team has also been actively involved in re-
searching computer science education in either primary, secondary,
or post-secondary education, including professional development
of K-12 teachers. A couple of our team members have been involved
with learning analytics, and several have conducted relevant re-
search and have published in the areas of computing education and
educational games. This includes one member who has been re-
searching how to teach creative practitioners about computational
thinking and coding for 20 years.

In addition to years of professional software engineering, analy-
sis, and consulting experience, several members of our team have
decades of experience researching, designing, developing, and pub-
lishing games and interactive playable media. This also includes
teaching game design and development, game production, creation
of art for games, narrative and storytelling for games. One team
member has 20 years of experience teaching media arts students
coding and design thinking at various universities. We have used
and taught various tools for game development Unity3D Game
Engine, Unreal Engine, Android, and Adobe Creative Suite, and
more.

3.2 Game Overview

To provide context to subsequent sections, we provide here a gen-
eral overview of If Memory Serves. The proposed game is a 2.5D,
cooperative, resource management, puzzle game, in the spirit of
Diner Dash, a resource management game that has been popular
among both boys and girls. This, combined with a café theme, was
carefully chosen for the familiarity in game play amount our target
demographic as well as familiarity of its theme.

The world of the game is a top-down view of a café that uses
pneumatic tubes to deliver food to customers. The player’s view
of the café includes both the kitchen and the dining area with a
counter bisecting the two that the players’ characters cannot cross.
Players take the role of one of the Pointer sisters, either Val, the
chef in the kitchen, or Addy, the server in the dining area. The

If Memory Serves

chef can pick up and move dishes of food between the kitchen and
the counter. This is an analogy for moving values between static
memory (read-only, global memory) and automatic memory (the
stack) in a computer program. The server can modify the pneumatic
tubes that transport the dishes of food between the counter and the
dining tables. This is an analogy for creating pointers between and
dereferencing automatic memory (the stack) and dynamic memory
(the heap).

The goal of the game is to serve customers by fulfilling orders
by moving dishes of food to different areas. Serving food to a
customer, clearing a table, and moving food from one place to
another requires both the chef and the server to perform a particular
sequence of actions. In particular, since the number of tubes is
restricted, the movements of each player are restricted, and the
abilities of each player are differentiated so they must work together
to fulfill the order. Further, each of the players’ actions corresponds
to operations in computer memory that can be represented as C
or C++ code. For example, World 1 (in Figure 2 depicts the act of
copying values, only abstracted in the analogy of moving coffee
from the preparation area to the serving area.

It is worth noting that the players are restricted from accessing
all of the café to create a play mechanic that facilitates the creation
of interesting puzzles and requires the cooperation of the two play-
ers. This restriction, however, introduces a false analogy because
computer programs can access all three parts of memory without
restriction. Thus, though we align the gameplay with tasks related
to memory allocation, we recognize that some explanation may be
necessary when explaining this analogy with students.

We present here several screen shots of the early prototype for If
Memory Serves (http://ifmemoryserves.org) in its current 2D
game view (see Figures 1, 2, 3, 4, and 5). Val is in the preparation
area (bottom of scene) and Addy is in the serving area above that.
The top area is reserved for customer tables (see Figures 2 and 3).
The corresponding lines of code for player actions is currently set to
visible and appears in the bottom right of the scene. At the time of
this writing, there are currently six worlds with each world having
between 2 and 4 levels.

Figure 1: Overlay for World 1, Level 1.

3.3 Early Design Considerations and Decisions

The key aim in our design process was to have the ideal learning
outcomes influence the design of the game. With this focus in mind
the three key components were the:

o learning objectives

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Figure 2: World 1, Level 1. Players must move a cup of coffee
from the preparation area to the serving area.

Figure 3: Overlay for World 1, Level 4. Players need to help
put a cup of coffee and a piece of cake on the counter.

Figure 4: Overlay for World 2, Level 1. Addy can pick up
a delivery pipe or attach a delivery pipe to a green square.
Val can push or pull food through the pipe. For this level,
players need to put a cup of coffee on the table.

o game elements (including the game’s mechanics, dynamics,
and aesthetics [59])
o learning objective-to-game element mapping

As part of our initial attempt at forming the criteria, we also
considered how the learning objectives align with the ACM/IEEE
Computing Curriculum categories [5]. Categorizing the game in
terms of established and community-defined learning outcomes can
provide a reference for instructors when searching for resources
for teaching these topics. These are presented above in Table 2.

In this section, we describe the development process that we used
to structure the planning and implementation of our game. Since
game design is often a process of exploration and refinement, these

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Figure 5: Overlay for World 4, Level 1. Addy’s increment
tool is used on a pipe’s origin green square to rotate a pipe
through positions at a table. Val has an offset tool which
will temporarily redirect a pipe if Val is on top of the pipe’s
origin green square. It’s initial value is 0 to indicate no offset,
but when used on a pipe’s origin green square will iterate
over possible offset values at the table. Players must get a
piece of cake on the counter.

Table 2: High level learning objectives of If Memory Serves
mapped to ACM/IEEE CC2013 categories [5]

Category Learning Outcomes

0S/ Memory Management ~ Review of physical memory and memory
management hardware

PL/Language Translation ~Memory management Manual memory

and Execution management: allocating, de-allocating,
and reusing heap memory

PL/ Runtime Systems Dynamic memory management

approaches and techniques

SDF/ Fundamental Data References and aliasing Linked lists

Structures

AR/Memory System Orga- Main memory organization and operation
nization and Architecture

steps were non-linear. As we worked through ideas, objectives, and
criteria, the design and objectives morphed and shifted.

3.3.1 lIdentifying Learning Objectives. To begin the development
process, we identified a set of learning objectives that:

(1) were generally accepted as important to the discipline of
computer science,

(2) invoked concepts that students find difficult,

(3) were specific enough to be evaluated using short, targeted
assessments, and

(4) were not already addressed by existing games.

Not all objectives found in other games for computing education
satisfied these criteria. For example, we found many games in our
prior work that could be classified as Logo puzzlers, or games in
which movement commands are used to drive an agent along a path
to a goal [60]. Such games are abundant and tend to have broad
objectives that touch upon many aspects of programming, making
it challenging to conduct a focused evaluation on the entire game.
In these instances, the games could be classified as sandbox games

M.M. McGill et al.

and can be viewed more as a tool for programming in general rather
than focused on one particular concept.

The initial list of broader categories we generated encompassed
a variety of subjects, including debugging, functional decomposi-
tion, iteration, memory diagramming, and memory management.
Pointer programming emerged as an ideal target problem that satis-
fied the four requirements above and were also previously identified
in research as a topic in which students often struggle.

Since this was a core component in developing the criteria for
the game, as our discussions progressed, we created and refined a
table for the levels and what learning outcomes each level might
address. As we worked through the topic, we generated a list of
ideal learning outcomes, shown in Table 3.

3.3.2 Identifying Game Concepts. The next step in our process
was to generate ideas that could be used to achieve one or more
of our learning objectives. Several genres were offered, including
match-3, word-puzzle and memory-style games, and the group
converged on a rough idea of a puzzle game in which a player
manipulated memory through pointers. This phase of the process
also led to a list of secondary objectives that we hoped to achieve.
In this section, we describe several of the factors that we considered
as we generated ideas and criteria for the game.

3.3.3 Target Audience. We identified the target audience as un-
dergraduate computer science students, most of whom are 18-24
years old. We chose this age group for several reasons. In addition
to the reasons given earlier (see section 2.2) that pointers are an
area that many students struggle, pointers are a more advanced
concept often taught after introductory computing courses. As de-
signers and developers, we would also have access to these groups
for testing the game.

We were also intrigued by the prospect of making a game that
was locally cooperative, meaning that two players would collabo-
rate to achieve their goal using the same computer. Collaborative
games are emerging as a popular form of game, where as well as
developing collaborative skills, game players also build up a social
bond with their partners [75, 94]. This is similar to some of the
challenges and benefits that emerge with pair programming both in
industry and academia. By so doing, students could play the game
together in a lab setting and discuss strategies.

3.3.4 Game Thematics. Brainstorming resulted in several po-
tential metaphors and themes that could be used for the game.
A key feature of the metaphors is that they needed to have two
spaces (metaphors for the stack, where values are manipulated and
the heap, where pointers are manipulated). The most favorable
metaphors included biological cells/environment, space/planets,
brain/world and café (kitchen and restaurant). The café metaphor
was chosen as it would be the most familiar metaphor for the target
users and a theme in which many students could relate.

Although a powerful metaphor has been identified in the café
game, the details of the analogies between the low level opera-
tions in pointer programming and kitchen/restaurant operation
must be developed. Identifying these analogies helped us (as the
game’s designers) identify potential errors in understanding what
can develop with false analogies and how they are likely to inhibit
learning in the target domain.

If Memory Serves

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Table 3: Ideal learning outcomes targeted through the game design

Learning Objectives Assessment Criteria

A Copying values (no pointers)

B Create pointer, assign value,
retrieve value, dereferencing

1) create a pointer.

1) know that values can be copied
2) develop skills to copy values

2) assign values into memory using pointers

3) dereference a pointer (get value stored there)

C Swap values using pointers

1) swap values using pointers and intermediate storage

2) identify errors in swapping pointers (e.g. not using intermediate storage)

D Value versus pointers

1) identify the difference between values and pointers

2) correctly identify when to use a value versus when to use a pointer

E Pointer Arithmetic

1) use pointer arithmetic to iterate through arrays of values

3) Identify errors in the use of pointer arithmetic

F Double Pointers

1) use pointers to pointers to create two-dimensional data structures

2) use pointer to pointers store and retrieve values from two-dimensional data structures
3) identify errors in the use of double pointers

G Malloc/Free

1) use malloc to allocate memory in the heap
2) use free to release memory

3) identify errors in the use of malloc and free

H Data Structure 1

(
(
(
(
(
(
(
(
(
(
(2) use pointer arithmetic to randomly access array locations
(
(
(
(
(
(
(
(
(
(

)

) use pointers to create data structure such as linked lists

2) use pointers to access and update data structure such as linked lists
)

3) Identify errors in the use of pointers in data structures

3.3.5 Game Mechanics. The mechanics of the game requires a
keyboard and for each player to control one of the characters. In
addition to the movement keys, each player uses 2-3 additional key
functions to be able to move the food/beverages to the appropriate
counters so the items could be served to the customers.

2D and 2.5D games potentially can have simple sliding tile me-
chanics; however, physic/kinematic based can also be beneficial,
in particular when the key features of the game mechanic include
collision. Constraining the players within the play areas is eas-
ily achieved using physic/kinematic based game mechanics and
similarly collisions between players, food/beverages and kitchen
benches/tables can be used to control the passing of objects to and
from players to the game environment.

3.3.6 Game Representation. The proposed game representation
is a 2.5D resource management puzzle game, but the prototype
is pure 2D. To achieve both, we created both 2D placeholder art
and 2.5D art assets for the early concept build of the game for the
player characters as well as the objects in the game (Figure 6, 7).
We intend to replace the placeholder assets with the 2.5D assets as
we continue working on the game.

Both players view the world in third-person. The screen space is
fixed, with no off-screen space or scrolling.

Flexibly-licensed sound assets were found that are consistent
with a restaurant theme. These include background chatter, back-
ground music, and other ambient sounds and have been added to
the game prototype.

HEE=2D
0« = B

Figure 6: Sampling of 2D sprites

Figure 7: Sampling of stylized 2.5D sprites

ITiCSE’17, July 03-05, 2017, Bologna, Italy

3.3.7 Objective-Task Mapping. As mentioned above, once the
target problem area was identified, we developed a set of ideal
learning objectives, ordering them in a manner in which they were
typically taught in courses. This was an organic process that orig-
inated in tandem with a rough breakdown of what and how we
wanted to teach in the various levels. We aligned them to specific
tasks that would be completed in the game, so the key game tasks
were chosen to contribute to the intended learning outcomes, rather
than add additional cognitive load for the student. This mapping
between the learning outcomes and the in-game goals were mapped
as shown in Table 4.

These learning outcomes were intended to be implemented within
the game while at ITiCSE 2017, with a goal of creating levels 1-5
by the end of the conference and future refinement and new levels
added thereafter.

3.3.8 Level Design. The specific tasks of the game are presented
to players through its level design. As players complete the tasks
in each level they progress to the higher levels. Normally there are
several sub-levels of each level that players must complete. Some
games will strictly enforce progression through the levels of the
game; however, often it is possible to jump to the relevant level that
a player is interested in using a menu structure.

Sometimes players will reach a point in a level where it is im-
possible to complete (e.g. when a value is overwritten in the classic
pointer swapping task). In these scenarios the game must recognize
that a solution is not possible, or a mechanism be provided for the
player to repeat the level. In If Memory Serves, the player can reset
the level by clicking on a reset level button.

The educational designer specifies a detailed learning task, for
example, the classical swap example shown in Table 5.

Levels in the game are specified using a text-based level file
that describes the initial configuration of the level as well as the
target that must be achieved. A preliminary set of levels have
been designed going from the most basic operations, through to
the higher level learning outcomes that have been targeted for
the game. These levels can also be extended easily by educational
designers as the game mechanics do not need to be changed to
make use of these new level, since they are dynamically created.

The game was prototyped using paper based mockups. Although
player movement can be tedious using paper mockups, they are rec-
ommended for identifying potential pitfalls in the proposed game
metaphors, themes, mechanics, and player tasks. The paper proto-
types also gave us an opportunity to make sure we each understood
how the mechanics would work and to look for the “fun” See
Figure 8 for several examples of the early prototyping process.

3.4 Orthogonal Elements to Gameplay

There are many potential orthogonal elements to the pure (educa-
tional) game play that can enhance the engagement and motivation
of the students who play. These include elements such as scoring
and achievements (i.e., badges, leaderboards, and in-game rewards).
These features can be developed independently of the raw game
play and can be switched on and off as needed in the educational
context where the game is used.

Many games include some scoring mechanism, either based on
time or based on task completion. This provides a mechanism

M.M. McGill et al.

for giving external feedback on playing the game. As the player
improves, a higher score is achieved. Extrinsic rewards such as
these tend to not be as effective as intrinsic rewards, which is the
satisfaction of actually learning and improving. In cases where self-
reflection is difficult, the extrinsic reward system can be beneficial.
We chose to loosely incorporate scoring to reward players when
they are able to successfully complete a level. A higher score is
given if the player meets or beats the par for that particular level.

In general, marking achievement in the game via, trophies,
badges and leaderboards encourages the students self-efficacy and
encourages students to use the game to improve their learning [33,
34]. Badges are used in games to recognize completion of tasks and
sub-goals. These are visible mechanism for marking achievement
of the player, which is maintained after a game is played. This is
different from a game score that is reset the next time that the game
is played. Again this is an extrinsic reward mechanism, however if
there is good alignment between task completion and actual skills
and knowledge, then this extrinsic marker is in fact a representation
of the internal skill or knowledge acquired.

The collectivist approach used by Decker aligns well with sev-
eral aspects of self-determination theory (i.e., senses of competency,
relatedness, and autonomy) [33]. It can be very effective and, via
organismic integration, help learners assimilate the external drivers.
With this in mind, we have considered adding badges to create be-
haviors that wouldn’t otherwise exist. Some research suggests they
can also stifle behaviors that already exist as soon as the badges
are no longer offered (potentially inhibiting forms of practice, de-
pending on the badge). For this early prototype stage, badges are
not incorporated; however, we anticipate future development of
badges and other achievements as the game evolves.

4 VALIDATION FRAMEWORK

A key part of the educational game development process involves
the evaluation of the game to determine its effectiveness. Such
evaluation can be summative, to support claims of effectiveness, or
formative, to set a road map for further work to improve the game.
Sometimes both, to form a feedback loop that drives a develop-
release cycle that is creatively iterative and/or makes incremental
improvements in efficacy.

However, based on the findings of the group’s prior work [60],
it was deemed infeasible to conduct a rigorous evaluation of all
or even a set of games previously reviewed the prior year in the
available time-frame. Notably, most of the games identified did not
have clear and granularly specified learning objectives nor were
there suitable measurement instruments available; for example, in
the case of If Memory Serves, as an aide in motivating students and
helping them to learn about pointers.

Within the limited scope of the session at ITiCSE 2017, there
was only sufficient time to identify appropriate learning objectives;
design the game based on these objectives; iteratively develop
a modest series of ludic sketches and paper mockups; and then
implement and extend a digital prototype. Though members of
the working group informally tested these prototypes, such user
tests primarily addressed the mechanics and dynamics of the game
design as well as methods of interaction and technical challenges.

If Memory Serves

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Table 4: Initial mapping of learning outcomes including example tasks

Level # LO Objective

Example

Demonstrate that values are copyable

clamp (lo, hi, *x) {

if (*x < 1lo) *x = lo;
else if (*x > hi) *x = hi;

clamp(@, 100, &val)

swap (*x, *y) {
int tmp = *x;
= *y;

tmp;

for (int i=0; i < strlen(s); ++i) { // s[il; }
versus
for (char *p=s; c!=="\\@';++p)

{7/ % 5}

A structure including a pointer member that is passed by reference to a

function that modifies the member.

Instantiation of a collection of structures for which the number of simul-

taneous instances needed is not known until run time.

1 A Copying values
2 B Address-of / dereferencing, memory
referencing/dereferencing, calling
semantics
}
3 C Swap - temporary storage
}
4 D Value versus address
5 E Pointer arithmetic, pointer/array duality
67 F Double pointers
7t G Malloc/free
8t H Data structure

Linked list

Given the need to provide a model for creating a new game with
such clear aims within the context of computing education, such
analysis is beyond the scope of this report. Yet, there remains a
critical need to evaluate the effectiveness of this particular game
as well as others currently in development. Revisiting research
question two,

e ”[RQ2] How can the effectiveness of digital games for com-
puter science education be validated?”

we were aware of the lack of measuring effectiveness with the
previous games reviewed. Hence, we agreed to propose a validation
framework, recommending research methods that would enable us
as well as other educators and researchers to take the game, use it
in their own institutions, and report their findings.

In this section, we establish a set of hypothesis, address episte-
mological challenges, present a design science approach, present a
potential research model, and propose a set of instruments to use
to measure each hypotheses.

4.1 Establishing Viable Hypothesis

While we created the prototype of the game, we were aware that we
needed to align the learning objectives with measurable outcomes
and provide a structured framework for validating these outcomes.
To instantiate a validation framework, we first needed to determine
a set of hypothesis for the game outcomes. The National Science

T denotes a stretch goal

Foundation’s Office of International Science and Engineering (NSF
ISE) defines five categories of educational technology impact that
can be measured: knowledge; engagement; attitude; behavior; and
skills [42]. Considering these alongside the original research ques-
tions, we propose these five initial hypotheses:

H; Knowledge: Students playing If Memory Serves in tandem
with traditional learning activities (e.g., readings, lecture,
etc.) will perform better on a test of conceptual knowledge
on pointers (i.e., purpose, usage and syntax, tracing and
prediction, debugging, etc.) than those students who only
participate in the traditional learning activities.

Hy Engagement: Students playing If Memory Serves in tandem
with traditional learning activities (e.g., readings, lecture,
etc.) will report a higher level of engagement with their
learning activity on pointers than those students who only
participate in the traditional learning activities.

Hs Attitude: Students playing If Memory Serves in tandem
with traditional learning activities (e.g., readings, lecture,
etc.) will report greater confidence and positivity about
their mastery of pointers than those students who only
participate in the traditional learning activities.

Hy Behavior: Students playing If Memory Serves in tandem
with traditional learning activities (e.g., readings, lecture,
etc.) will be observed to spend more time-on-task and

ITiCSE’17, July 03-05, 2017, Bologna, Italy M.M. McGill et al.

Table 5: Specifying level through educational design

Educational
Designers
Description of Task

Code Description

of task and
solution

Initial level

Swap two values in heap using a temporary stack value. Initial Layout: Two heap values, A and B,
one empty stack pointer, and one empty stack value.

// initial code
register char val;

char *p = new char('A');
char =*q;

char a;

char *r = new char('B');
// solution code

q = p; // Addy creates a pointer from stack to A.
a = xq; // Val dereferences pointer to copy A to the empty stack value.
g = r; // Addy overwrites the pointer from stack to B.

val = xq; // Val dereferences pointer to copy B.

g = p; // Addy overwrites the pointer from stack to A.

*q = val; // Val moves copy of B to heap via pointer both heap values are B).
g = r; // Addy overwrites pointer from stack to other B.

*q = a; // Val copies the value A from the stack to the heap via the pointer.

; Initial Layout

specification -- A B --
- & -
——t+++ +, FXF -
— % -
Goal level ; Target Layout
specification -- B A --
=+t A A
apply different learning strategies than those students who Keeping these five hypotheses in mind, in the following sec-
only participate in the traditional learning activities. tions we present a theoretical view of epistemological challenges, a
Hs Skills: Students playing If Memory Serves in tandem with proposed design science approach to conduct the research, and a
traditional learning activities (e.g., readings, lecture, etc.) research model before revisiting how to specifically measure each.

will demonstrate more apt and coherent use of pointers
in a programming assignment (measured by functional

coherence, source code sophistication, and source code

4.2 Epistemological Challenges

maintainability) than those students who only participate Proposing a single framework to validate If Memory Serves and
in the traditional learning activities. other educational games that are being used to educate computing

If Memory Serves

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Figure 8: Prototyping a level in If Memory Serves including a softcopy mockup (top-left), a paper prototype (top-right), a ludic
sketch (bottom-left), and an early digital prototype (bottom-right).

students presents an obvious challenge: What constitutes accept-
able evidence of effectiveness? Different researchers will likely
adopt different epistemological positions (i.e., the appropriateness
of different methods for knowledge construction) and trends in
knowledge construction can change as the paradigm of a particular
research community shifts [63].

Within the SIGCSE community, researchers have levied many
criticisms of the types of work being disseminated at its confer-
ences as well as the methodologies utilized to make knowledge
claims. Notable examples include Valentine’s criticisms of marco
polo papers and Randolph’s review of the validity of experimental
work being conducted [95, 96]. In more recent years, Tew & Dorn
raise concern over the validity of measurement techniques [113]
(also see Newton & Shaw’s treatise on the topic [80]) as well as
increased attention towards the use of rigorously validated con-
cept inventories [112] (perhaps inspired by similar work on the
development and evaluation of peer instruction in physics [38, 57]).

These criticisms are further compounded by a seeming lack of
clarity on the minimally acceptable evidence as well as reference to
prior work needed to make a knowledge claim within the SIGCSE
community [65, 86], perhaps, driven through a lack of consensus on
particular sub-fields. This means that there is no single dominating
approach. While this means a plurality of work is being conducted,
some of which make use of unusual yet enlightening approaches,
it makes it challenging to situate a validation framework in the
context of the existing literature.

Another complication, to this end, is the varied and disparate
theoretical underpinning for much of the work in computer science
education research [69]. Malmi et al. found that about half of the
work published between 2005 and 2011 in prominent journals and
research-focused conferences did not build on previous theoretical
work and some were instead forming their own theoretical con-
structions. As these theories develop, they are likely going to have
future impacts on any validation framework proposed. Particularly,
as the nuances and peculiarities of teaching computer science topics
becomes better understood as these could reveal new factors that
educators need to consider when evaluating games for computing
education.

It will also be important to consider not only quantitative methods
in any validation framework proposed, but also qualitative methods,
which have much to offer in terms of understanding impacts (rather
than just detecting them) and relating them to the field’s theory
development [14, 56].

Despite these challenges, Pears et al. [87] note that there is a
rich history of tool-development and evaluation in the field, of
which, games should be considered a part—as learning tools. In
particular, the development of tools to help students develop their
programming skills forms a prominent part of the available liter-
ature. It is, perhaps, surprising not to see a dominant approach
emerging. However, even within educational games as a sub-area of
tool development, there is little evidence of consensus. Colleagues
from across the Engineering Education community, particularly

ITiCSE’17, July 03-05, 2017, Bologna, Italy

those with an interest in software engineering, have been facing
similar challenges: Giessen conducts an overview of the effects of
serious games, noting many cases of bad practice in methodology
and a general lack of rigor [47]. Again, with respect to measuring
quality in games, All notes a lack of good practice [8]. Petri et
al. [89, 90] note that many attempts to evaluate games assume an
ad hoc approach: “not [using] any well-defined model or method to
conduct the evaluation of the educational game” going on to state
that “evaluations are reported in an informal ad-hoc way, not pro-
viding an explicit definition of the evaluation objective, measures
or data collection instruments.”

It is clear that there are substantial differences in the ways re-
searchers are approaching the evaluation of digital games and a lack
of convergence on a particular set of methods suitable in evaluating
games designed for computing education. Furthermore, existing
methods are being placed under considerable scrutiny. While it
is hoped that within this particular sub-field, game development
for computer science education, the call to improve rigor will be
heeded, the framework proposed in the next section is not intended
to be a comprehensive or one-size-fits-all. Merely, it serves as an
example of one such framework that addresses some of the chal-
lenges and pitfalls highlighted by other researchers doing work in
this field.

4.3 Design Science Approach

Paving the way towards a rigorous model to evaluate games in
the computer science context, the working group reviewed the
criticism described in the previous section and, based on a synthesis
of its insights and recommendations, propose a research design
that would be suitable for the evaluation of If Memory Serves and
other digital games being used in computing education by forming
a validation framework. Of course, this is not the only approach to
evaluating games, and will not claim to be comprehensive, but the
group has aligned it with all of the NSF ISE impact categories [42]
and the associated hypotheses outlined in the introduction.

The proposed approach borrows much from the school of design
science [25, 37]. As noted in [37]:

Design Science is “tough, analytic, partly formaliz-
able, partly empirical, teachable doctrine.” (Simon
1996, p.113). it formalizes the logic of design by
prescribing statements of how artifacts “should be-
come” (Pries-Heje and Baskerville 2008). The pri-
mary contribution of design science to knowledge
is reflected in what the literature calls design prin-
ciples which are rules that guide designers during
their design of a certain class of artifacts (Hevner
and Chatterjee 2010). The truthfulness of design
principles can be evaluated using prototypes of the
intended artifacts (Hevner and Chatterjee 2010).

The Double Diamond approach to artifact development is pro-
posed as a general model by the British Design Council [29] and,
broadly speaking, reflects some general practices in the games in-
dustry where developers tend to commence projects with a phase
of pre-production and then commence production as a second
stage [22] (see Figure 9).

M.M. McGill et al.

. .

R

&S @6\,-" :

o\ ot
< research insight ideation prototype ™

¢ : * : g
2 g i El
5 g g

DEFINE DELIVER

Figure 9: Double Diamond for Design [21]

To extend beyond this model of tool development into a model of
tool development and evaluation, an additional phase of testing—the
element of research—and a feedback loop. Thus, conducting more
research to generate insight that is used to improve the prototype.
This model corresponds to the approach described in [88]; however,
we propose greater emphasis be made on agility (of the iteration)
and a hypo-deductive empirical approaches to the research phase.

4.4 Research Model

The gold standard for validating whether a game-based learning
intervention is effective is the randomized control trial (RCT) [121].
However, only 30 of 272 evaluations (~11%) identified in Connolly
et al’s systematic reviews used this approach [18, 28]. Further, only
19 of the 117 evaluations (~16%) that Petri and Wangenheim [89]
had identified used an experimental design.

The validation framework, consequently, encourages the ap-
proach. It presents a fertile field of opportunities to verify prior
work, establish effect sizes of game-based interventions in con-
trolled conditions, and promote further insight generation.

Mahoney [67] serves as a convenient reference on different exper-
imental designs. The simplest design for our context is the control
group pre-test, post-test design (number 9, in table 1 on page 667).
However, given the range of dependent variables, a slightly more
complex design involving a delayed post-test is recommended.

The stages are as follows:

e Conduct a power analysis to determine minimum viable
sample size given the hypothesized effect size (min. d =
0.4 [55])

e Recruit participants

o Capture demographic data

— If available, obtain data on prior skill from relevant
prior assessments

o Randomly allocate participants to two groups

— If necessary, use a stratified random sample based on
demographic data (e.g., gender, prior experience, etc.)

— Ensure that participants are blinded to which experi-
mental condition they are assigned to

e Capture knowledge of participants using the concept in-
ventory

e Capture attitude of participants using a questionnaire

o Conduct experiment - intervention group and control group

If Memory Serves

Table 6: Extract of Supplementary Measurement Instru-
ments (From [omit])

Measure Available From
EGAMEFLOW [43]
MEEGA+ [91]
PANAS [119]
Game Usability Heuristic [93]
SUS [19]
TAM [122]
— Use tools such as OBS Studio to capture on-screen
behavior
e Again, capture knowledge of participants using the concept
inventory
e Again, capture attitude of participants using a question-
naire

o Interview participants following the mind-tape protocol

(or similar)
— Make use of footage captured by OBS studio

e Capture engagement of participants using self-report ques-
tionnaire

o Wait

e Again, capture knowledge of participants using the concept
inventory

e Again, capture attitude of participants using a question-
naire

e Obtain data on skill from post-experiment assessments

At the first stage, we recommend keeping things as simple as
possible: a game-only solo play group is appropriate to inform
design until a more mature game is available. After conducting lab
experiments, a follow-on pragmatic trial is appropriate (i.e., in a
more natural setting to enhance external validity, like in studies of
therapies once deployed in practice; c.f. [66]). We also note that care
must be taken to ensure that both groups have the same amount
of time on the task(s). If the experimental group has more time on
task, we would expect the outcomes to be higher with or without a
game.

4.5 Measures

Referring back to our original five hypothesis (see section 4.1), we
propose a set of instruments to be used to measure each.

4.5.1 Knowledge. The Knowledge hypothesis states:

Students playing If Memory Serves in tandem with
traditional learning activities (e.g., readings, lec-
ture, etc.) will perform better on a test of conceptual
knowledge on pointers (i.e., purpose, usage and syn-
tax, tracing and prediction, debugging, etc.) than
those students who only participate in the traditional
learning activities.

This dependent variable will be measured through a custom-tailored
concept inventory developed by the working group (see Appendix).

ITiCSE’17, July 03-05, 2017, Bologna, Italy

We reviewed several computer science assessment instruments,
and one we found useful was the Foundational CS1 assessment in-
strument (FCS1) by Tew and Guzdial [1, 114]. From the descriptions
provided for FCS1, we established three goals:

(1) All items in the instrument should be multiple choice,

(2) All items in the instrument should cover all learning out-
comes, and

(3) The instrument should contain three different types of
questions:

(a) Definition questions: In FCS1, the items seem to be
vocabulary based and are intended to measure concep-
tual understanding. Using vocabulary questions with
a pre- and post-test is difficult without repeating the
questions, so the initial version of our instrument con-
tains vocabulary questions that use code (i.e. which
line of code has a variable dereference). This provides
the capability for the researcher to change the code a
different question that measures similar outcomes.

(b) Tracing questions: These questions will gauge students’
knowledge about what a given block of code will pro-
duce when it is executed. These are used to evaluate a
student’s ability to read code. We also included 'none
of the above’ answers and code with errors to create
questions with common errors in an attempt to differ-
entiate between pointer vs. value learning outcomes.

(c) Writing questions: These questions will gauge the stu-
dents’ knowledge to identify the missing code that will
correctly complete the program. These are to evaluate
students’ abilities to write code with pointers, while
still using a multiple choice format.

The measurement instrument includes questions for each of the
learning outcomes. Though the instrument was initially created in
C++, it does not need to be restricted to it. In addition to refining the
questions and piloting them with students, future considerations
include:

e Would it make more sense to make a second C version or
try to create questions that use pseudocode?

o Are there any other languages that use pointers that would
be worth supporting?

e How to represent pointers in pseudocode in a manner that
students understand?

4.5.2 Engagement. The Engagement hypothesis states:

Students playing If Memory Serves in tandem with

traditional learning activities (e.g., readings, lecture,

etc.) will report a higher level of engagement with

their learning activity on pointers than those stu-

dents who only participate in the traditional learn-

ing activities.

This dependent variable will be measured through two approaches:

(i) a self-report at the post-test; and (ii) measuring time-on-task
from data obtained within the context of the experiment (i.e., screen
capture and in-session metrics). This will permit triangulation on
perception of interest while also afford opportunities to contextu-
alize. The group propose the use of Keller’s ARCS learning moti-
vation model, which is popular in the examination of educational

ITiCSE’17, July 03-05, 2017, Bologna, Italy

technology more generally. This has been incorporated into the
measurement instrument validated and made available by Huang
et al. [58].

4.5.3 Attitude. The Attitude hypothesis states:

Students playing If Memory Serves in tandem with
traditional learning activities (e.g., readings, lecture,
etc.) will report greater confidence and positivity
about their mastery of pointers than those students
who only participate in the traditional learning ac-
tivities.

This dependent variable will be measured at pre-test and post-
test by self-report using an appropriate questionnaire. Depending
on the context in which pointers are taught, this might include adap-
tations to existing instruments designed and validated to measure
computing attitudes [35, 105]. Where appropriate, other supple-
mentary measures could be used.

4.5.4 Behavior. The Behavior hypothesis states:

Students playing If Memory Serves in tandem with
traditional learning activities (e.g., readings, lec-
ture, etc.) will be observed to spend more time-on-
task and apply different learning strategies than
those students who only participate in the tradi-
tional learning activities.

There are two aspects of this dependent variable which are of
interest to the working group: (i) approach-to-task (related to en-
gagement and time-on-task, but exploring the actual behaviors);
and (ii) differences in the behaviors exhibited by participants be-
tween each of the experimental conditions. This measure is pri-
marily qualitative, but depending on how data are processed and
analyzed and presented could be quantized. Such qualitative data
can also be incredibly useful in deriving new insights into a design,
and helping to identify new things to model and predict in future
experiments, but potentially forming recommendations for future
developers—one of the aims of design research.

This data is collected via screen capture, perhaps using a tool such
as OBS studio, and a follow-up interview conducted after the exper-
iment. During the interview, a variation of the think-aloud protocol
called MindTape [82, 83] is suggested (sometimes called a cognitive
walk-through). This is a retrospective reflection approach, in which
the screen capture is used as a guide for the interviewer and a
memory prompt for the participant. This aids with clarifications of
why particular behaviors may have been adopted, while aiding in
the rejection of feasible, yet incorrect interpretations of behaviors
and why they occurred. More sophisticated designs augment this
by using in-session metrics or props (e.g. SubtleStone [48]) to draw
attention to particular segments of a session.

4.5.5 Skill. The Skill hypothesis states:

Students playing If Memory Serves in tandem with
traditional learning activities (e.g., readings, lecture,
etc.) will demonstrate more apt and coherent use of
pointers in a programming assignment (measured
by functional coherence, source code sophistication,
and source code maintainability) than those students

M.M. McGill et al.

who only participate in the traditional learning ac-
tivities.

Measuring this dependent variable can be challenging because
the learning objectives of programs within and between institutions
may differ. As such, the domain within which and/or the way in
which a skill is applied may require a slightly different measure. It
is known that there are differences in the approaches used to assess
the application of knowledge in programming (see [40, 106, 109,
110], etc.).

It is, therefore, difficult to prescribe any single validated instru-
ment or approach to measurement. Furthermore, caution is advised.
It is important that any measure of skill is at least face-valid and
self-consistent within the study. A typical approach may involve, in
the first instance, the use of a combination of self-reported prior ex-
perience alongside evidence drawn from relevant prior assignment
submissions. It is almost universally the case, per the principle of
constructive alignment [15], that an assignment and/or exam will
measure students’ mastery of any particular point in a program.
Thus, examining confers a suitable opportunity to capture skill at a
later stage as a delayed post-test.

4.6 Data Analysis

The validation framework does not prescribe any particular method
of analysis. However, as a suggestion for which statistical analysis
techniques to apply to quantitative data, Analysis of Covariance
(ANCOVA) is broadly considered appropriate for comparing data
created through experimental trials. This is particularly the case
when pre-test data is available [31]. For post-test only measures
then a Wilcoxon-Mann-Whitney test or, if the data is normal, a
t-test is appropriate [39].

Of note, however, is error inflation. This can be adequately
accounted for using the Benjamini-Hotchberg correction [12]. This
correction may increase sample size requirements.

We also note the importance of collecting adequate demographic
information, including year in school, age, gender, and amount of
time engaged in game. Since this is a collaborative game, being
able to identify those participants who were paired for the game
may also be important.

4.7 Ethics and Approval Processes

Full validation of educational games requires access to often con-
fidential participant data (demographic information, educational
task performance, academic grades etc), while participants are also
required to complete various tasks that may then impact (either
positively or negatively) their learning performance. All of these
raise ethical issues which are governed by national and interna-
tional laws and are set out in research ethics codes of conduct such
as EU Ethics for Research document and the British Educational
Research Association Ethics Guidelines. In Australia, the Australian
Code for the Responsible Conduct of Research and the National
Statement on Ethical Conduct in Human Research (2007) provide
a legal framework govern the conduct of research with Human
participants. In the European Union, all personal data is also sub-
ject to relevant data protection laws. These frameworks require
universities and research institutions to have an ethics approval
process in place to ensure only ethical research will be carried out.

If Memory Serves

The educational research required to validate educational games
are generally not considered to be of high risk to participants in
comparison to aggressive interventions in medical fields; however,
research in the educational setting can also be high risk when
the participants are from vulnerable groups, such as children, are
unable to give informed consent, highly confidential information
is accessed, there is a pre-existing and/or current teacher-student
relationship with the researcher etc. In the case when educational
research is high risk, these risks can be mitigated with relevant
controls such as using participants that can give informed consent,
de-identification of data and administering surveys outside of the
teaching period.

Although many universities have a requirement for ethics ap-
proval to be granted before the research can commence, in cases
of multi-institutional collaborations, normally one institution will
submit an ethics application to that institution, which if approved
will be then lodged with the other partner institutions.

5 LIMITATIONS AND FUTURE DIRECTIONS

We provide here a summary of the limitations of this study as well
as a list of future directions and further call to action.

5.1 Limitations

Though no different than other working groups, our working group
researched and developed game mechanics prior to ITiCSE 2017,
developed the game prototype during ITiCSE 2017, and have con-
tinued to user test and evolve the game since meeting. In addition,
we have developed the concept inventory and guide to evaluating
the game. However, as with any active research project, there are
several limitations. One major limitation is that the game is still a
work in progress. Despite having a prototype of the game, the four
days that the group convened during ITiCSE was insufficient time
to review past limitations of games for computing education and
create a completed game that meets these limitations. Our early dis-
cussions on days 1 and 2 focused primarily on design, choosing the
areas of learning for the game, and defining the learning outcomes.
Day 2 led to active discussions about game representation and how
to choose a design that it appealing to a wide variety of demograph-
ics while remaining culturally relevant for undergraduate students.
Days 3 and 4 were spent developing the game mechanics and an ini-
tial user interface, while refining how the game would play through
its levels. Day 5 (the last day) was spent pulling together an initial
draft of this report.

The Concept Inventory (presented in the Appendix) will be used
and changed as needed based on piloting of the inventory and
feedback from other instructors. We recognize that it is a starting
point for evaluating the game in the future.

Given the ambitiousness of this project, ITiCSE provided us with
a major step forward in providing a solid foundation for the game.
However, we did not have the time nor access to a set of students
to receive approval from an ethics board to conduct testing on
any significant scale. Knowing this, we instead opted to create a
framework for conducting this stage of measuring effectiveness
of the tool, including the development of a concept inventory for
pointers. This work remains to be completed and is discussed more
in the next section.

ITiCSE’17, July 03-05, 2017, Bologna, Italy

5.2 Future Directions

This working group has initiated a game development and valida-
tion methodology that could be further developed and enhanced
through national and international collaborations. Specifically, for
If Memory Serves, we invite the community to consider modding
the game in any of the following ways:

Adapt and modify levels

Adapt and modify art

Adapt and modify narrative

Integrate automated tutorial system

Integrate achievements (e.g. badges)

Conduct player testing

Enhance the player experience

Adapt the game for mobile devices

Interpretive guides for instructors to enable them to easily
contextualize the game with how pointers are used in their
code

We invite the community to consider using the evaluation meth-
ods of the game as provided or changing/adding to these methods,
including (but not limited to) the following:

o Provide additional resources for testing, including IRB ma-
terials

e Provide additional survey instruments for testing

o Provide methodology for conducting qualitative studies of
effectiveness

e Provide an on-line system for collecting data on players

o Integrate data collection of game metrics into the game and
provide an automated method for reporting those metrics

Neither of these are comprehensive lists, but they provide some
direction into areas where we were unable to complete during the
working group meeting. If you are able to collaborate or contribute
to the development or evaluation of If Memory Serves, contact our
working group for more information on resources and tools, includ-
ing source code and survey tools.

A by-product of this work has the potential of being a repository
of resources for educational research in educational games for
computer science [104].

Clear areas for development include expansion of the current
games platform including open-source tools chains. With open
licensing it is likely that this platform will develop quickly and
be available for educators and researcher around the world to use.
With this expanded international community there will be further
opportunities for broader-base testing and analysis of games based
education in computer science.

6 CONCLUSIONS

This working group has developed a preliminary games education
platform and a case study, If Memory Serves, that illustrates how
a learning outcomes based approach can be used to facilitate ed-
ucational games development within computer science. Games
created for computer science should map to broader learning goals
in common standards, such as the ACM/IEEE Computing Curricula,
as well as more specific goals related to the subject(s) being taught
or reinforced.

ITiCSE’17, July 03-05, 2017, Bologna, Italy

In addition to the more specific items above that relate to If Mem-
ory Serves, there are many further opportunities for collaboration
and future work in the area of games for computing education,
including:

e Psychological effects

e Psychometrics via game narratives and response systems

e Data mining for misconceptions or indicators of early-
attrition

e Process analysis versus product analysis

e Learning analytics

e Learning visualization

e Motivational meta-game

Each of these areas represent a significant sub-discipline that
has the potential to significantly influence the effectiveness of ed-
ucational games as an instrument for supporting learning in the
new generation of students.

REFERENCES

(1]

o
&

=

[10]

[11]

[12]

[14

[15

[16]

[17]

=
&

db-SERC: Assessments - Computer Science. http://dbserc.pitt.edu/Assessment/
Assessments-Computer-Science. (????). Accessed: 2017-08-15.

2011. Personifying programming tool feedback improves novice programmersfi
learning. (2011), 109-fi?!116.

2012. Investigating the role of purposeful goals on novicesfi engagement in a
programming game. (2012), 163—£i?!166.

Clark C Abt. 1987. Serious games. University press of America.

ACM/IEEE. 2013. CS Joint Task Force on Computing Curricula. 2013. Computer
Science Curricula ACM Press and IEEE Computer Society Press.

Deanne M Adams, Richard E Mayer, Andrew MacNamara, Alan Koenig, and
Richard Wainess. 2012. Narrative games for learning: Testing the discovery and
narrative hypotheses. Journal of educational psychology 104, 1 (2012), 235.
Bruce Adcock, Paolo Bucci, Wayne D. Heym, Joseph E. Hollingsworth, Timothy
Long, and Bruce W. Weide. 2007. Which Pointer Errors Do Students Make?.
In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE '07). ACM, New York, NY, USA, 9-13. DOI:http://dx.doi.org/
10.1145/1227310.1227317

Anissa All, Elena Patricia Nunez Castellar, and Jan Van Looy. 2014. Measuring
effectiveness in digital game-based learning: a methodological review. Interna-
tional Journal of Serious Games 2, 1 (2014), 3-20.

Anthony Allevato, Stephen H. Edwards, and Manuel A. Pérez-Quifiones. 2009.
Dereferee: Exploring Pointer Mismanagement in Student Code. In Proceedings
of the 40th ACM Technical Symposium on Computer Science Education (SIGCSE
’09). ACM, New York, NY, USA, 173-177. DOI :http://dx.doi.org/10.1145/1508865.
1508928

Tiffany Barnes, H Richter, A Chaffin, A Godwin, E Powell, T Ralph, P Matthews,
and H Jordan. 2007. The role of feedback in Game2Learn. In CHI, Vol. 2007. 1-5.
Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (2005), 103-106.

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the royal statistical
society. Series B (Methodological) (1995), 289-300.

Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in introductory
programming. ACM SIGCSE Bulletin 39, 2 (2007), 32-36.

Anders Berglund, Mats Daniels, and Arnold Pears. 2006. Qualitative research
projects in computing education research: an overview. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 25-33.

John Biggs. 1996. Enhancing teaching through constructive alignment. Higher
education 32, 3 (1996), 347-364.

Paul Black and Dylan Wiliam. 2010. Inside the black box: Raising standards
through classroom assessment. Phi Delta Kappan 92, 1 (2010), 81-90.

Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark
Ratcliffe, Kate Sanders, and Carol Zander. 2007. Threshold Concepts in Computer
Science: Do They Exist and Are They Useful?. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE "07). ACM, New
York, NY, USA, 504-508. DOI:http://dx.doi.org/10.1145/1227310.1227482
Elizabeth A. Boyle, Thomas Hainey, Thomas M. Connolly, Grant Gray, Jeffrey
Earp, Michela Ott, Theodore Lim, Manuel Ninaus, Claudia Ribeiro, and Joo
Pereira. 2016. An update to the systematic literature review of empirical evidence

of the impacts and outcomes of computer games and serious games. Computers
& Education 94 (2016), 178 — 192. DOI :http://dx.doi.org/10.1016/j.compedu.2015.

11.003

(19]

[21]
[22]

[23

[24

[27]

(28]

[29

(31]

(32]

[33

[34

(35]

[36

[37

(38]

@
9,

[40

[41]

[42]

[43]

M.M. McGill et al.

John Brooke and others. 1996. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189, 194 (1996), 4-7.

Tracy Camp. 1997. The incredible shrinking pipeline. Commun. ACM 40, 10
(1997), 103-110.

MENA Design Research Centre. 2015. What Is Design Research? https://www.
menadrc.org/research/. (2015). [Accessed 07-Sept-2017].

Mark Cerny and Michael John. 2002. Game development. Myth vs. method.
Game Developer (2002), 32-36.

Richard E Clark. 1994. Media will never influence learning. Educational technol-
ogy research and development 42, 2 (1994), 21-29.

Richard E Clark, Kenneth Yates, Sean Early, Kathrine Moulton, KH Silber, and R
Foshay. 2010. An analysis of the failure of electronic media and discovery-based
learning: Evidence for the performance benefits of guided training methods.
Handbook of training and improving workplace performance 1 (2010), 263-297.
Allan Collins. 1992. Toward a design science of education. In New directions in
educational technology. Springer, 15-22.

Thomas Connolly, MH Stansfield, and Thomas Hainey. 2008. Development of a
general framework for evaluating games-based learning. In Proceedings of the 2nd
European conference on games-based learning. Universitat Oberta de Catalunya
Barcelona, Spain, 105-114.

Thomas Connolly, Mark Stansfield, and Thomas Hainey. 2009. Towards the
development of a games-based learning evaluation framework. Games-based
learning advancements for multisensory human computer interfaces: Techniques
and effective practices. Hershey PA: IGI Global (2009).

Thomas M Connolly, Elizabeth A Boyle, Ewan MacArthur, Thomas Hainey, and
James M Boyle. 2012. A systematic literature review of empirical evidence
on computer games and serious games. Computers & Education 59, 2 (2012),
661-686.

British Design Council. 2005. The Design Process: The ‘Double Dia-
mondfi Design Process Model. http://www.designcouncil.org.uk/about-design/
how-designers-work/the-design-process/. (2005). [Accessed 03-July-2017].
Michelle Craig and Andrew Petersen. 2016. Student Difficulties with Pointer
Concepts in C. In Proceedings of the Australasian Computer Science Week Mul-
ticonference (ACSW ’16). ACM, New York, NY, USA, Article 8, 10 pages. DOI:
http://dx.doi.org/10.1145/2843043.2843348

Lee J Cronbach and Lita Furby. 1970. How we should measure” change”: Or
should we? Psychological bulletin 74, 1 (1970), 68.

Sara De Freitas and Martin Oliver. 2006. How can exploratory learning with
games and simulations within the curriculum be most effectively evaluated?
Computers & education 46, 3 (2006), 249-264.

Adrienne Decker and Elizabeth Lane Lawley. 2013. Life’s a Game and the Game of
Life: How Making a Game out of It Can Change Student Behavior. In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE
’13). ACM, New York, NY, USA, 233-238. DOI:http://dx.doi.org/10.1145/2445196.
2445269

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From
Game Design Elements to Gamefulness: Defining “Gamification”. In Proceedings
of the 15th International Academic MindTrek Conference: Envisioning Future
Media Environments (MindTrek '11). ACM, New York, NY, USA, 9-15. DOI:
http://dx.doi.org/10.1145/2181037.2181040

Brian Dorn and Allison Elliott Tew. 2013. Becoming Experts: Measuring Attitude
Development in Introductory Computer Science. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 183-188. DOI:http://dx.doi.org/10.1145/2445196.2445252
Brock Dubbels. Under Review. Serious Games Can Ensure Serious Learning.
Computers in Human Behaviour (Under Review).

Mazen El-Masri, Ali Tarhini, M Hassouna, and T Elyas. 2015. A Design Science
Approach To Gamify Education: From Games To Platforms.. In ECIS.

Adam P Fagen, Catherine H Crouch, and Eric Mazur. 2002. Peer instruction:
Results from a range of classrooms. The physics teacher 40, 4 (2002), 206—-209.
Michael P Fay and Michael A Proschan. 2010. Wilcoxon-Mann-Whitney or t-test?
On assumptions for hypothesis tests and multiple interpretations of decision
rules. Statistics surveys 4 (2010), 1.

Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley, and Laurie
Murphy. 2013. What are we thinking when we grade programs?. In Proceeding of
the 44th ACM technical symposium on Computer science education. ACM, 471-476.
Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning
increases student performance in science, engineering, and mathematics. Pro-
ceedings of the National Academy of Sciences 111, 23 (2014), 8410-8415.

Alan Friedman. 2008. Framework for evaluating impacts of informal science
education projects. Retrieved December 8 (2008), 2008.

Fong-Ling Fu, Rong-Chang Su, and Sheng-Chin Yu. 2009. EGameFlow: A Scale
to Measure Learners’ Enjoyment of e-Learning Games. Comput. Educ. 52, 1 (Jan.
2009), 101-112. DOI:http://dx.doi.org/10.1016/j.compedu.2008.07.004

James P. Gee. 2000. Identity as an analytic lens for research in education. Review
of research in education 25 (2000), 99-125.

http://dbserc.pitt.edu/Assessment/Assessments-Computer-Science
http://dbserc.pitt.edu/Assessment/Assessments-Computer-Science
http://dx.doi.org/10.1145/1227310.1227317
http://dx.doi.org/10.1145/1227310.1227317
http://dx.doi.org/10.1145/1508865.1508928
http://dx.doi.org/10.1145/1508865.1508928
http://dx.doi.org/10.1145/1227310.1227482
http://dx.doi.org/10.1016/j.compedu.2015.11.003
http://dx.doi.org/10.1016/j.compedu.2015.11.003
https://www.menadrc.org/research/
https://www.menadrc.org/research/
http://www.designcouncil.org.uk/about-design/how-designers-work/the-design-process/
http://www.designcouncil.org.uk/about-design/how-designers-work/the-design-process/
http://dx.doi.org/10.1145/2843043.2843348
http://dx.doi.org/10.1145/2445196.2445269
http://dx.doi.org/10.1145/2445196.2445269
http://dx.doi.org/10.1145/2181037.2181040
http://dx.doi.org/10.1145/2445196.2445252
http://dx.doi.org/10.1016/j.compedu.2008.07.004

If Memory Serves

[45]

[46]

[47]

[48

[49]

[50

[51]

i
&

[53

[54]
[55]

[56]

[57]

[58]

[59]

[60]

N
=

[62]
[63]
[64]
[65]
[66]

[67]

N
&

[69]

[70]

(71

[72]

)
&

[74]

James P. Gee. 2003. What video games have to teach us about learning and
literacy. Computers in Entertainment (CIE) 1, 1 (2003), 20-20.

Michail N Giannakos, Ilias O Pappas, Letizia Jaccheri, and Demetrios G Sampson.
2016. Understanding student retention in computer science education: The
role of environment, gains, barriers and usefulness. Education and Information
Technologies (2016), 1-18.

Hans W Giessen. 2015. Serious games effects: an overview. Procedia-Social and
Behavioral Sciences 174 (2015), 2240-2244.

Judith Good, Jon Rimmer, Eric Harris, and Madeline Balaam. 2011. Self-reporting
emotional experiences in computing lab sessions: An emotional regulation
perspective. In Proceedings of the 23rd Annual Psychology of Programming Interest
Group Conference.

Neil Andrew Gordon. 2016. Issues in retention and attainment in Computer Science.
Higher Education Academy.

Cecilia M Gorriz and Claudia Medina. 2000. Engaging girls with computers
through software games. Commun. ACM 43, 1 (2000), 42-49.

Sigrun Gudmundsdottir and Lee Shulman. 1987. Pedagogical content knowledge
in social studies. Scandinavian Journal of Educationl Research 31, 2 (1987), 59-70.
Glenda A Gunter, Robert F Kenny, and Erik H Vick. 2008. Taking educational
games seriously: using the RETAIN model to design endogenous fantasy into
standalone educational games. Educational technology research and Development
56, 5 (2008), 511-537.

MP Jacob Habgood, SE Ainsworth, and Steve Benford. 2005. Endogenous fantasy
and learning in digital games. Simulation & Gaming 36, 4 (2005), 483-498.
Nancy B Hastings and Monica W Tracey. 2004. Does media affect learning:
where are we now? TechTrends 49, 2 (2004), 28-30.

John Hattie. 2008. Visible learning: A synthesis of over 800 meta-analyses relating
to achievement. Routledge.

Orit Hazzan, Yael Dubinsky, Larisa Eidelman, Victoria Sakhnini, and Mariana
Teif. 2006. Qualitative research in computer science education. In Acm Sigcse
Bulletin, Vol. 38. ACM, 408-412.

David Hestenes, Malcolm Wells, and Gregg Swackhamer. 1992. Force concept
inventory. The physics teacher 30, 3 (1992), 141-158.

Wenhao Huang, Wenyeh Huang, Heidi Diefes-Dux, and Peter K Imbrie. 2006.
A preliminary validation of Attention, Relevance, Confidence and Satisfaction
model-based Instructional Material Motivational Survey in a computer-based
tutorial setting. British Journal of Educational Technology 37, 2 (2006), 243-259.
Robin Hunicke, Marc LeBlanc, and Robert Zubek. 2004. MDA: A formal approach
to game design and game research. In Proceedings of the AAAI Workshop on
Challenges in Game Al Vol. 4. 1722.

Chris Johnson, Monica McGill, Durell Bouchard, Michael K Bradshaw, Victor A
Bucheli, Laurence D Merkle, Michael James Scott, Z Sweedyk, J Angel, Zhiping
Xiao, and others. 2016. Game Development for Computer Science Education. In
Proceedings of the 2016 ITiCSE Working Group Reports. ACM, 23-44.

Slava Kalyuga and Jan L Plass. 2009. Evaluating and managing cognitive load in
games. In Handbook of research on effective electronic gaming in education. IGI
Global, 719-737.

Robert B Kozma. 1994. Will media influence learning? Reframing the debate.
Educational technology research and development 42, 2 (1994), 7-19.

Thomas S Kuhn. 1970. The Structure of Scientific Revolutions, 2nd enl. ed. University
of Chicago Press.

MR Lepper, TW Malone, RE Snow, and MJ Farr. 1987. Aptitude, learning, and
instruction: IIl. Conative and affective process analyses. (1987).

Raymond Lister and Ilona Box. 2008. A citation analysis of the SIGCSE 2007
proceedings. ACM SIGCSE Bulletin 40, 1 (2008), 476-480.

Hugh MacPherson. 2004. Pragmatic clinical trials. Complementary therapies in
medicine 12, 2 (2004), 136—-140.

Michael] Mahoney. 1978. Experimental methods and outcome evaluation. Jour-
nal of Consulting and Clinical Psychology 46, 4 (1978), 660.

Christos Malliarakis, Maya Satratzemi, and Stelios Xinogalos. 2014. Design-
ing Educational Games for Computer Programming: A Holistic Framework.
Electronic Journal of e-Learning 12, 3 (2014), 281-298.

Lauri Malmi, Judy Sheard, Roman Bednarik, Juha Helminen, Paivi Kinnunen,
Ari Korhonen, Niko Myller, Juha Sorva, Ahmad Taherkhani, and others. 2014.
Theoretical underpinnings of computing education research: what is the evi-
dence?. In Proceedings of the tenth annual conference on International computing
education research. ACM, 27-34.

Richard E Mayer. 2004. Should there be a three-strikes rule against pure discovery
learning? American psychologist 59, 1 (2004), 14.

Richard E Mayer. 2005. The Cambridge handbook of multimedia learning. Cam-
bridge university press.

Richard E Mayer. 2009. Multimedia learning (2nd). Cambridge University Press
New York.

Richard E Mayer and Cheryl I Johnson. 2010. Adding instructional features that
promote learning in a game-like environment. Journal of Educational Computing
Research 42, 3 (2010), 241-265.

Richard E Mayer and Roxana Moreno. 2003. Nine ways to reduce cognitive load
in multimedia learning. Educational psychologist 38, 1 (2003), 43-52.

[77]

(78]

[79]

(80]

(82

(83]

(84]

[85

(87

(8]

(89]

[90]

[92

(93]

[94]

[95]

(%]
[97]

[98]

[99]

ITiCSE’17, July 03-05, 2017, Bologna, Italy

Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fernald. 2006.
Pair programming improves student retention, confidence, and program quality.
Commun. ACM 49, 8 (2006), 90-95.

Jan HF Meyer and Ray Land. 2005. Threshold concepts and troublesome knowl-
edge (2): Epistemological considerations and a conceptual framework for teach-
ing and learning. Higher education 49, 3 (2005), 373-388.

Punya Mishra and Matthew J Koehler. 2006. Technological pedagogical content
knowledge: A framework for teacher knowledge. Teachers college record 108, 6
(2006), 1017.

Roxana Moreno. 2004. Decreasing cognitive load for novice students: Effects of
explanatory versus corrective feedback in discovery-based multimedia. Instruc-
tional science 32, 1 (2004), 99-113.

Roxana Moreno and Richard Mayer. 2007. Interactive multimodal learning
environments. Educational psychology review 19, 3 (2007), 309-326.

Paul Newton and Stuart Shaw. 2014. Validity in educational and psychological
assessment. Sage.

David J Nicol and Debra Macfarlane-Dick. 2006. Formative assessment and
self-regulated learning: A model and seven principles of good feedback practice.
Studies in higher education 31, 2 (2006), 199-218.

Janni Nielsen and Nina Christiansen. 2000. Mindtape: a tool for reflection in
participatory design. In PDC. 309-313.

Janni Nielsen, Torkil Clemmensen, and Carsten Yssing. 2002. Getting access to
what goes on in people’s heads?: reflections on the think-aloud technique. In
Proceedings of the second Nordic conference on Human-computer interaction. ACM,
101-110.

Harry O Neil and R. S Perez. 2008. Computer games and team and individual
learning. Elsevier.

Marina Papastergiou. 2009. Digital game-based learning in high school computer
science education: Impact on educational effectiveness and student motivation.
Computers & Education 52, 1 (2009), 1-12.

Arnold Pears, Stephen Seidman, Crystal Eney, P4ivi Kinnunen, and Lauri Malmi.
2005. Constructing a core literature for computing education research. ACM
SIGCSE Bulletin 37, 4 (2005), 152-161.

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. ACM SIGCSE Bulletin 39, 4 (2007),
204-223.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.
2007. A design science research methodology for information systems research.
Journal of management information systems 24, 3 (2007), 45-77.

Giani Petri and Christiane Gresse von Wangenheim. 2016. How to Evaluate Edu-
cational Games: a Systematic Literature Review. Journal of Universal Computer
Science 22, 7 (2016), 992-1021.

Giani Petri and Christiane Gresse von Wangenheim. 2017. How games for
computing education are evaluated? A systematic literature review. Computers
& Education 107 (2017), 68—90.

Giani Petri, C Gresse von Wangenheim, and Adriano Ferretti Borgatto. 2016.
MEEGA+: an evolution of a model for the evaluation of educational games.
INCoD/GQS 3 (2016).

Giani Petri, Christiane Gresse von Wangenheim, and Adriano Ferreti Borgatto.
2017. A large-scale evaluation of a model for the evaluation of games for teaching
software engineering. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education Track. IEEE Press,
180-189.

David Pinelle, Nelson Wong, and Tadeusz Stach. 2008. Heuristic evaluation for
games: usability principles for video game design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 1453-1462.

Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013. Success in
introductory programming: What works? Commun. ACM 56, 8 (2013), 34-36.
Justus Randolph, George Julnes, Erkki Sutinen, and Steve Lehman. 2008. A
Methodological Review of Computer Science Education Research. Journal of
Information Technology Education 7 (2008).

Justus J Randolph. 2008. Multidisciplinary methods in educational technology
research and development. HAMK Press/Justus Randolph.

Mark R Rank, Hong-Sik Yoon, and Thomas A Hirschl. 2003. American poverty as
a structural failing: Evidence and arguments. J. Soc. & Soc. Welfare 30 (2003), 3.
Carriann E Richey Smith, Priscilla Ryder, Ann Bilodeau, and Michele Schultz.
2016. Use of an Online Game to Evaluate Health Professions Studentsfi Attitudes
toward People in Poverty. American journal of pharmaceutical education 80, 8
(2016), 139.

Lloyd P Rieber. 1996. Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and games.
Educational technology research and development 44, 2 (1996), 43-58.

[100] Gina Roussos and John F Dovidio. 2016. Playing below the poverty line: Inves-

tigating an online game as a way to reduce prejudice toward the poor. Cyberpsy-
chology: Journal of Psychosocial Research on Cyberspace 10, 2 (2016).

[101] Rigby C.S. Ryan, R.M. and A. Przybylski. 2006. The motivational pull of video

games: A self-determination theory approach. Motivation and emotion 30, 4

ITiCSE’17, July 03-05, 2017, Bologna, Italy

(2006), 344-360.

[102] Rafael Savi, Christiane Gresse von Wangenheim, and Adriano Ferreti Borgatto.
2011. A model for the evaluation of educational games for teaching software
engineering. In Software Engineering (SBES), 2011 25th Brazilian Symposium on.
IEEE, 194-203.

[103] R Keith Sawyer. 2005. The Cambridge handbook of the learning sciences. Cam-
bridge University Press.

[104] Michael James Scott and Gheorghita Ghinea. 2013. Integrating fantasy role-
play into the programming lab: exploring the’projective identity’hypothesis. In
Proceeding of the 44th ACM technical symposium on Computer science education.
119-122.

[105] Michael James Scott and Gheorghita Ghinea. 2014. Measuring enrichment: the
assembly and validation of an instrument to assess student self-beliefs in CS1. In
Proceedings of the tenth annual conference on International computing education
research. ACM, 123-130.

[106] Michael James Scott and Gheorghita Ghinea. 2015. Reliability in the assessment
of program quality by teaching assistants during code reviews. In Proceedings
of the 2015 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 346-346.

[107] Sharon A Shrock. 1994. The media influence debate: Read the fine print, but don’t
lose sight of the big picture. Educational Technology Research and Development
42, 2 (1994), 49-53.

[108] HA Spires, KA Turner,] Rowe, B Mott, and J Lester. 2010. Game-based litera-
cies and learning: Towards a transactional theoretical perspective. American
Educational Research Association (AERA), Denver, CO (2010).

[109] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2014. Towards an
empirically validated model for assessment of code quality. In Proceedings of
the 14th Koli Calling International Conference on Computing Education Research.
ACM, 99-108.

[110] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a
rubric for feedback on code quality in programming courses. In Proceedings of
the 16th Koli Calling International Conference on Computing Education Research.
ACM, 160-164.

[111] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and instruction 4, 4 (1994), 295-312.

[112] Cynthia Taylor, Daniel Zingaro, Leo Porter, Kevin C Webb, Cynthia Bailey Lee,
and M Clancy. 2014. Computer science concept inventories: past and future.
Computer Science Education 24, 4 (2014), 253-276.

[113] Allison Elliott Tew and Brian Dorn. 2013. The case for validated tools in
computer science education research. Computer 46, 9 (2013), 60-66.

[114] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language Indepen-
dent Assessment of CS1 Knowledge. In Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education (SIGCSE ’11). ACM, New York, NY,
USA, 111-116. DOI:http://dx.doi.org/10.1145/1953163.1953200

[115] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A sys-
tematic review of approaches for teaching introductory programming and their
influence on success. In Proceedings of the tenth annual conference on International
computing education research. ACM, 19-26.

[116] Christiane Gresse Von Wangenheim and Forrest Shull. 2009. To game or not to
game? IEEE software 26, 2 (2009), 92-94.

[117] Lev S Vygotsky. 1978. Mind in society: The development of higher mental process.
Cambridge, MA: Harvard University Press.

[118] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education. ACM, 39-44.

[119] David Watson, Lee A Clark, and Auke Tellegen. 1988. Development and valida-
tion of brief measures of positive and negative affect: the PANAS scales. Journal
of personality and social psychology 54, 6 (1988), 1063.

[120] Nicola Whitton. 2009. Learning with digital games: A practical guide to engaging
students in higher education. Routledge.

[121] Lisa Woolfson. 2011. Educational psychology: The impact of psychological research
on education. Pearson Education.

[122] Amri Yusoff, Richard Crowder, and Lester Gilbert. 2010. Validation of serious
games attributes using the technology acceptance model. In Games and Virtual
Worlds for Serious Applications (VS-GAMES), 2010 Second International Conference
on. IEEE, 45-51.

A POINTER CONCEPT INVENTORY

This concept inventory has been designed to align with the learning
objectives presented in each level of the game. Items below are
presented according to learning outcomes for outcomes A-E. Items
have yet not been developed for Outcomes F, G, and H. We have

also skipped Outcomes C, since it doesn’t seem to be fundamental
to pointers. The legend for the type of question posed is C for

Concepts/Definition Questions, T for Tracing, and W for Writing.

M.M. McGill et al.

For code tracing questions, we note that all of these questions
assume knowledge of iostream, using namespace std, and code
inside a main function. Students may think that the entire quiz
is nothing but “gotchas”and answer none of the above on every
question. We could make all of the questions more verbose by
including the elided code, or just assume none one would make
that assumption.

We also note that Learning Outcome C does not seem to be
fundamental to pointers, and therefore no items are included in
this version of the assessment. Since this is a preliminary version
of this concept inventory, it has not yet been piloted or validated.

A.1 Learning Outcome A: Value Basics, No
Pointers

These questions are fundamentally basic. We include them here,
since we have a learning outcome for values and they might be
useful by providing a mechanism to remove a participant from the
study. (If they can’t answer these questions correctly then they
can’t be expected to learn pointers.)
(1) (C) For the following snippet of code, select all statements
that are true about line 3.

int a = 1;
:(int b = 2;
1;
a

sjla = b +

sjcout << a << " " << b;

(a) line 3 will change the value of the variable a when
executed (¥)
(b) line 3 will change the value of the variable b when
executed
(c) line 3 will evaluate to false because 1 does not equal 3
(d) line 3 will prevent the program from compiling be-
cause 1 does not equal 3
(2) (C) For the following snippet of code, which lines will
produce compile-time errors?

1lint a = 1;
:[int b;
sichar ¢ = 'A';
4| char d;

5/a

0O Qo 0 T

a >
7b=;
d

’

(3) (T) What would the following snippet of code print when

run?

1| char a;

z[char b;

3la = 'B';

4b = a,

sla = 'A";

sjcout << a << " " << b;

http://dx.doi.org/10.1145/1953163.1953200

If Memory Serves

(a) AA
(b) AB (%)
(c) BA
(d BB
(e) None of the above
(4) (T) What would the following snippet of code print when
run?

char a[2];

2| char b;

slaf0] = 'A';

4 3[1] = 'B';

slaf@]= al[1];

s|al1]1 = a[e];

7lcout << af@] << " " << a[1];

(a AA
(b) AB (%)
(c) BA
(d) BB
(e) None of the above
(5) (W) For the following snippet of code,

i[int a;
2|cin >> a;
sjcout << a;

which of the following lines, if placed in line 3, would
create a program that prints the number 1 greater than
what the user enters?

@ a+1;

(b) a=a+1;()

(©) a++; ()

A.2 Learning Outcome B: Pointer Basics

(1) (C) For the following snippet of code, match the line num-
ber to the description of the operation performed on that
line.

char a;
2| char *p;
3a=‘A';
4 p = &a;
s|cout << *p;

(a) pointer declaration (2)
(b) pointer dereference (5)
(c) pointer reference (4)
(2) (T) What would the following snippet of code print when
run?

1{char *p;

2[char *q;

3|p = new char('B');
19 = p;

ITiCSE’17, July 03-05, 2017, Bologna, Italy

sip = new char('A');
sjcout << *xp << " " << *(q;

(@) AA
(b) AB (")
(c) BA
(d) BB
(e) None of the above
(3) (T) What would the following snippet of code print when
run?

char *p;
2|char a;
p = new char('A");
4@ = *p;
p = new char('B");
cout << #p << " " << a;

’

©w

@

EN

(@ AA
(b) AB
() BA()
(d BB
(e) None of the above
(4) (T) What would the following snippet of code print when
run?

char a;
char *p;
sla = 'A';
p = &a;
5|1 = 'B';
cout << a << " " << *p;

N

IS

(@ AA
(b) AB
(c) BA
(d) BB(")
(e) None of the above
(5) (T) What would the following snippet of code print when
run?

char a;

z[char *p;

sjla = 'A';

4/p = new char('B');

s|*p = a;

s|jcout << a << " " << *p;

(@ AA()
(b) AB
(c) BA
(d BB
(e) None of the above
(6) (T) What would the following snippet of code print when
run?

ITiCSE’17, July 03-05, 2017, Bologna, Italy

char *p;

2| char *q;

p = new char('A");

g = new char('B");

*q = *p;

sjcout << *p << " " << *q;

w

-

@

@@ AA()
(b) AB
(c) BA
(d BB
(e) None of the above
(7) (W) The following snippet of code is incomplete:

char *p;

2| char *q;

p = new char('A");
q = XXX;

cout << *q;

w

-

@

Which of the following in place of XXX will complete the
program so that it prints A when run.
@ p()
(b) *p
(c) &
(d) None of the above
(8) (W) The following snippet of code is incomplete:

char *p;

2| char a;

p = new char('A");
dja = XXX;

sicout << a;

w

Which of the following in place of XXX will complete the
program so that it prints A when run.
(@ p
(b) *p (*)
(c) &p
(d) None of the above
(9) (W) The following snippet of code is incomplete:

char *p;
2| char a;
3la = 'A';
p = XXX;
sjcout << *p;

IS

Which of the following in place of XXX will complete the
program so that it prints A when run.
(a) a
(b) *a
() &a ()
(d) None of the above
(10) (W) The following snippet of code is incomplete:

M.M. McGill et al.

char *p;

2[char a;

p = new char('B");
4l = 'A';

*xp = XXX;

s|cout << *p;

w

@

Which of the following in place of XXX will complete the
program so that it prints A when run.
(@ a(’)
(b) &a
(c) *a
(d) None of the above
(11) (W) The following snippet of code is incomplete:

char *p;

z[char *q;

p = new char('A');
q = new char('B');
*q = XXX;

6| cout << *q;

w

'S

@

Which of the following in place of XXX will complete the
program so that it prints A when run.

(@ p

(b) &p

(©) *p (%)

(d) None of the above

A.3 Learning Outcome D (Values Vs Pointers
AKA Common Pointer Errors)
(1) (C) For each variable in the following snippet of code, spec-
ify whether the memory for the variable contains a char

value or an address that refers to a location in memory that
contains a char value.

i/char a = 'A';
z[char *p = &a;
sichar b = *p;
4| char xq = p;

(a) a (value)
(b) p (address)
(c) b (value)
(d) q (address)
(2) (C) For the following snippet of code, which lines will
produce compile-time errors?

i|{char a = 'A';

zchar b = 'B';

s|char *p = new char('C');
4[char xq = new char('D");
sla = b;

s|p = &a;

71b = *q;

8P = Q;

sla =p; (%)

If Memory Serves

10
11

12

(©)

@

EN

©

w

IS

@

EN

©)

a=b; (%
p = xa; (%)
b=28 ()

(T) What would the following snippet of code print when
run?

char *p;

char *q;

p = new char('A");

q =p;

p = new char('B");
cout << p <" " << q;

a) AA

(b) AB

(c) BA

(d BB

(e) None of the above (*)

(T) What would the following snippet of code print when
run?

char *p;

char a;

p = new char('A");
a=p;

p = new char('B");

cout << *p << " " << a;

(a AA

(b) AB

(c) BA

(d BB

(e) None of the above (*)

(T) What would the following snippet of code print when
run?

char a;

char *p;

a="A"

p = a;

a=|Bl;

cout << a << " " << *p;

(@) AA

(b) AB

(c) BA

(d BB

(e) None of the above (*) (compile-time error for incom-
patible types)

A.4 Learning Outcome E (Pointer Arithmetic)

1)

(C) For the following snippet of code, what does line 2 do?

)

®)

w

4

(©)

ITiCSE’17, July 03-05, 2017, Bologna, Italy

int *p = new int[2] {1, 23};
pH+;
cout << *p;

(a) Changes the address of the pointer p.

(b) Changes the value that the pointer p refers to.

(c) Neither of the above, it is an error.
(T) What would the following snippet of code print when
run?

char #*p;

char a;

p = new char[2] {'A",
a = *p;

pt+;
*p = a;

cout << xp << " " << a;

'B'};

(@ AAC()

(b) AB

(c) BA

(d BB

(e) None of the above

(T) What would the following snippet of code print when
run?

char *p;

char a;

p = new char[2] {'A",
a=x(p+1)

*p = a;

cout << #p << " " << a;

'B'};

(@ AA()

(b) AB

(c) BA

(d BB

(e) None of the above

(T) What would the following snippet of code print when
run?

char *p;

char a;

p = new char[2] {'A",
a=x*(p+2)

*p = a;

cout << #p << " " << a;

’

'B'};

(@) AA

(b) AB

(c) BA

(d) BB

(e) None of the above (*)

(T) What would the following snippet of code print when
run?

ITiCSE’17, July 03-05, 2017, Bologna, Italy

char *p;

2| char a;

p = new char[2] {'A"', 'B'};
dja = *p + 2;

5|%p = a;

slcout << xp << " " << a;

w

(@) AA
(b) AB
(c) BA
(d BB
(e) None of the above (*) (It prints 'C’.)
(6) (W) The following snippet of code is incomplete:

char *p;

p = new char[2] {'A"', 'Z'};
p = XXX;

cout << *p;

N

w

-

Which of the following in place of XXX will complete the
program so that it prints Z when run.

M.M. McGill et al.

@ p+1()
(b) *p + 1
(© *(p + 1)
(d) None of the above
(7) (W) The following snippet of code is incomplete:

char *p;

2|char a

p = new char[2] {'A", 'Z'};
da = XXX;

s|cout << a;

©w

Which of the following in place of XXX will complete the
program so that it prints Z when run.

(@ p +1

(b) *p + 1

() *(p + 1)

(d) None of the above

Received 9 September 2017; revised 20 November 2017; accepted 1 December
2017

	Abstract
	1 Introduction
	2 Background
	2.1 Games for Learning
	2.2 Previous Review of Games for Computer Science Education
	2.3 Teaching Memory Management and Pointers
	2.4 Summary

	3 Pointer Game Case Study
	3.1 Team Composition
	3.2 Game Overview
	3.3 Early Design Considerations and Decisions
	3.4 Orthogonal Elements to Gameplay

	4 Validation Framework
	4.1 Establishing Viable Hypothesis
	4.2 Epistemological Challenges
	4.3 Design Science Approach
	4.4 Research Model
	4.5 Measures
	4.6 Data Analysis
	4.7 Ethics and Approval Processes

	5 Limitations and Future Directions
	5.1 Limitations
	5.2 Future Directions

	6 Conclusions
	References
	A Pointer Concept Inventory
	A.1 Learning Outcome A: Value Basics, No Pointers
	A.2 Learning Outcome B: Pointer Basics
	A.3 Learning Outcome D (Values Vs Pointers AKA Common Pointer Errors)
	A.4 Learning Outcome E (Pointer Arithmetic)

